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ABSTRACT

The separation of water and fat from multiecho images is a classic problem

in magnetic resonance imaging (MRI) with a wide range of important clinical appli-

cations. For example, removal of fat signal can provide better visualization of other

signals of interest in MRI scans. In other cases, the fat distribution map can be of

great importance in diagnosis.

Although many methods have been proposed over the past three decades,

robust fat water separation remains a challenge as radiological technology and clinical

expectation continue to grow. The problem presents three key difficulties: a) the

presence of B0 field inhomogeneities, often large in the state-of-the-art research and

clinical settings, which makes the problem non-linear and ill-posed; b) the ambiguity

of signal modeling in locations with only one metabolite (either fat or water), which

can manifest as spurious fat water swaps in the separation; c) the computational

expenditure of fat water separation methods as the size of data is increasing along

with the evolving MRI hardware, which hampers the clinical applicability of fat water

separation.

The main focus of this thesis is to develop novel graph search based algo-

rithms to estimate the B0 field inhomogeneity maps and separate fat water signals

with global accuracy and computational efficiency. We propose a new smoothness con-

strained framework termed as the GlObally Optimal Surface Estimation (GOOSE),

in which the spatial smoothness of the B0 field is modeled as a finite constraint be-

tween adjacent voxels in a uniformly discretized graph. We further develop a new
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non-equidistant graph model that enables a Rapid GlObally Optimal Surface Esti-

mation (R-GOOSE) in a subset of the fully discretized graph in GOOSE. Extensions

of the above frameworks are also developed to achieve high computational efficiency

for processing large 3D datasets. Global convergence of the optimization formulation

is proven in all frameworks. The developed methods have also been compared to the

existing state-of-the-art fat water separation methods on a variety of datasets with

consistent performance of high accuracy and efficiency.
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PUBLIC ABSTRACT

In vivo magnetic resonance imaging (MRI) has been widely used in the clinical

setting and radiological research. Since it is radiation free and can provide images

of high quality, it has played a promising and increasingly active role in medicine

overall. Most clinical MRI applications collect signal from protons, either as part of

water or fat. By applying different imaging schemes and acquisition times, MRI can

provide excellent contrast between soft tissues based on whether the signal is from

water protons or fat ones.

Due to the difference between biochemical structures of fat and water, fat sig-

nal can appear bright in many important imaging scenarios and therefore obscure

underlying pathology such as inflammation, edema or progression of certain tumor.

Meanwhile, direct visualization of fat distribution is also desirable in various patholo-

gies such as fatty tumors, including adrenal adenomas, angiomyolipomas and other

fat-related mesenchymal tumors. Quantification of visceral adipose tissue is also en-

joying a great interest in recent studies. In these cases, separation of water and fat

signals can be highly useful by providing water-only and/or fat-only images.

However, the separation of fat and water signals in MRI remains difficult due

to multiple hurdles. The mathematical model for the fat water signal is flawed by

nature in the presence of fat- or water-only locations. On the other hand, while

technology advancement in the MRI scanner is bringing more promising diagnosis

and treatment plans for patients, it also poses challenges in redesigning current fat

water separation methods for the advancement. Large B0 magnetic field variations

vii
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can make the separation problem more ill-conditioned. The increasing data size and

resolution demand faster, simpler and more accurate approaches to solve the fat water

separation problem.

The goal of this thesis is to develop new fat water separation methods by

employing graph search based models. The developed methods achieve global op-

timality of the newly designed problem formulations for fat water separation. New

frameworks are also proposed in this work to reduce the computational time by an

order of magnitude compared to state-of-the-art methods. With experiments on a

variety of datasets, particularly with challenging anatomical regions and of large size,

the proposed methods have demonstrated their great potential to improve the state-

of-the-art methods in more applications of MRI fat water separation.

viii
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the vertex costs. Note that there are both local and global minimal

costs in the graph. In this example the local minimal cost at f1 are

very close to the global minimal cost at f2, for which voxel-independent

schemes mostly fail. (b) Illustration of the constraints in graph-cut op-

timization. Each vertex on a specific voxel is connected with (2α + 1)

neighbors. For example, the vertex a at the spatial location (x, y) is

only connected with b1, b2, and b3 in the column corresponding to its

neighbouring voxel (x+1, y). Similarly, it is only connected to (2α+1)

neighbors in the voxel (x, y + 1). S is the surface that intersects one

voxel at each column within the smoothness constraint. The objective
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3.2 Illustration of the concepts in graph cut optimization. (a) Closed set:

vertices a, b and c do not form a closed set, because vertex d which is
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surface S∗ is transformed into finding the minimum-cost closed set
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γAγ)

−1AT
γ s. . . . . . . . . . . . . . . . . 36
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f grid points (Nf ) and R∗2 points (Nr) are varied and the resulting
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4.1 Illustration of the graph constructions in GOOSE (a) and R-GOOSE

(b). For simplicity, we restrict our attention to 2-D graphs, while

our implementation is in 4-D. The maximum likelihood measurement

specified by D(f(r)) is discretized on a uniform grid of field map values;

the plot of D(f(r)) at a specific pixel is shown in (c). (a) In GOOSE,

the fieldmap was uniformly discretized with each node corresponding

to a discrete frequency, indicated by the black dotted lines in (c) and

the black circles in (a) and (c). A graph smoothness constraint was

used in GOOSE, where each node is connected to only (2α+1) nearby

nodes in the adjacent pixels. Here, the smoothness constraint α was 1.

The node costs were chosen as D(f(r)), while no smoothness costs were

considered. (b) In R-GOOSE, we only consider the local minimizers of

D(f(r)), which correspond to the nodes at each pixel, indicated by the

green circles in (b) and (c). Note that the nodes are not equispaced

in the R-GOOSE setting. We use a graph ssmoothness penalty in R-

GOOSE as opposed to the smoothness constraint in GOOSE. Hence,

each node in a pixel is connected to all the nodes in the adjacent pixels.

The node costs are still chosen as D(f(r)), while the smoothness cost

between the ith node in pixel r and the jth node in its neighboring pixel

s are chosen as wr,s|fi − fj|2.The objective here is to find the surface

(S) that minimizes the total of both costs. . . . . . . . . . . . . . . . 52

4.2 (a)-(e) An example of inter-column edge connectivity. Minimizers

col(r1) = 4, 6 and col(r2) = 1, 3 are chosen to form the new graph.There

are four possibilities of where the surface cuts through, indicating four

combinations of minimizers in the final solution, which depends on the

total cost from the combination of edges and nodes. . . . . . . . . . 52
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4.3 The information flow in the implementation of R-GOOSE. We dis-

cretize D(f(r)) in Eq.(5.2) on a uniform grid. Then we extract all

minimizers (colorcoded in green) using finite difference method and im-

port them to the graph model. The field map and the initial R∗2 = 1/T ∗2

map are obtained after the globally optimal surface estimation using

the proposed smoothness penalized optimization formulation. The R∗2

are then updated in refinement using field map from graph search,

which in conjunction with the field map is used for estimating fat wa-

ter concentrations. The fat and water recovery can be achieved in steps

after Graph Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Dependence of the solution on the parameters. In (a), the change of

the average score as a function of the number of layers (minimizers) Nf

at 3 to 12 is plotted. The overall performance of R-GOOSE reaches

the similar level as GOOSE (the dashed line) when Nf = 9. (b) is

the plot for the averages score obtained from R-GOOSE as a function

of the number of R∗2 points, Nr. Here, we use Nf = 9 and µ = 100.

We choose Nr = 30 for the rest of the experiments. Nr is observed

to have little impact in computational time so the result of the time

change with respect to Nr is not shown here. The score change with

respect to the penalty parameter µ is shown in (c) for R-GOOSE. The

scores are consistent across all Nf when µ is between [0.1, 2.0]. (d)
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CHAPTER 1
INTRODUCTION

1.1 Fat Water Separation in MRI: Development and Motivation

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality based

on the principles of nuclear magnetic resonance (NMR). Since the early development

in the 1970s, MRI has demonstrated to be a highly versatile and multi-functional

imaging technique. It is estimated that there are more than 36,000 MRI scanners in

use worldwide for diagnostic medicine and biomedical research [1]. Unlike other imag-

ing modalities like positron emission tomography (PET) and computed tomography

(CT) which involve radiation, MRI applies strong magnetic fields, radio waves and

field gradients to generate images of the organs in the body and hence does not re-

quire body exposure to ionizing radiation. While X-rays provide detailed information

about high density structures like bones, MRI provides images with high resolution

of soft tissues and anatomical structures with high contrast.

Most clinical MRI images are signals collected from water and/or fat protons.

The separation of water and fat signals in MRI is an important problem with many

clinical applications [2–6]. For example, fat removal is the objective of many cases.

It is very typical in pulse sequences such as steady-state free precision (SSFP) [6–9],

spoiled gradient echo (SPGR) [10–14], or fast spin echo(FSE) [15–18], where fat can

appear lunimous and therefore may disguise the underlying pathologies. On the

other hand, fat can also be the target signal of interest for different study purposes
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such as fatty infiltrative diseases [19, 20], adenoma [21] or renal angiomyolipomas

[22]. The quantification of fat signal is also drawing great interest in many studies

visceral adipose tissue [23,24], brain [25], breast [26], liver [5,27–30], cardio-ventricular

diseases [31–33]. In these cases, the fat-only images can bring desirable insights to

the diagnosis.

Researchers have proposed a variety of methods to address the fat water sepa-

ration problem. Overall, there are two major types of the various methods. The first

type, also a straightforward approach, is fat suppression during excitation. A com-

mon practice is to employ frequency selective excitation/saturation schemes such as

CHESS [34], simultaneous spatial and spectral excitation [35,36] or short T1 inversion

recovery sequences [37], since protons from water and fat are excited at different res-

onance frequencies. The advantages of this type methods are fat are removed during

the data collection stage without requiring any post processing steps during image

reconstruction or analysis. However, the main downside is many of them are innately

sensitive to B0 inhomogeneities. Due to the magnet imperfections and susceptibility

of the imaging object, B0 inhomogeneities are often unavoidable in the imaging pro-

cess. This often gives rise to frequency shifts in spatial dimensions which eventually

represent as geometry distortion or intensity change in MRI images. In the case of

frequency selective excitation scheme, B0 inhomogeneities can lead to the failure of

fat signal suppression or even the suppression of water signal in certain conditions.

The other type of methods is so called chemical shift encoded fat water imag-

ing. In this type, a series of images are collected in a sequential order at multiple time
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echo (TE) (also called multiecho methods). Each pixel in the images is considered

as a combination of fat and water signals, both of which contain the complex valued

magnitude and phase components. This is the basic signal model used in the famous

Dixon method [38] and its many variations. The separate fat and water signals, often

as well as an estimation of the B0 inhomogeneity map are obtained by fitting the

model to the collected measurements often with different post processing strategies

such as analytical models, morphological methods, energy minimization formulations

or hyrid schemes. The main benefit of these methods are their capability of generating

fat- and water-only images, whic can be of great value in clincal settings as mentioned

above [10,23,24]. Another advantage is the insensitivity to B0 inhomogeneity. In fact,

most of these methods can provide an estimate of the B0 inhomogeneity map in ad-

dition to the separate fat and water images. The estimated B0 inhomogeneity map

(also called ‘field map’) are also seen to gain more attention in recent studies such as

quantitative susceptibility mapping (QSM) [39].

Because of the advantages of the Dixon based methods and their clinical and

research applications, a plethora of methods for field map estimation and fat water

separation have been proposed over the last three decades. In the next chapter, the

Dixon model and different methods with their merits and drawbacks will be further

elaborated before introducing the main methods proposed in this thesis.
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1.2 Overview of Contributions

The main goal of this thesis is to develop novel frameworks for field map

estimation and fat water separation with high accuracy and efficiency. In particular,

the main contributions of the thesis are the following:

1. A smoothness constrained problem formulation to estimate field inhomogeneity:

Field map estimation is reformulated as a constrained surface estimation prob-

lem to exploit the spatial smoothness of the field, thus minimizing the ambi-

guities in the recovery. Specifically, the differences in the field map-induced

frequency shift between adjacent voxels are constrained to be in a finite range.

The discretization of the above problem yields a graph optimization scheme,

where each node of the graph is only connected with few other nodes in a fully

discretized graph.

2. A non-iterative graph search solution with global optimality: We introduced a

non-iterative graph search algorithm for solving the above smoothness con-

strained formulation. The global minimum of the constrained optimization

problem is guaranteed with theoretical proof. This non-iterative graph search

model greatly reduces the dependency on parameter initialization and tuning

in many state-of-the-art iterative methods. The global optimality and free-

dom from iterative restrictions lead a significant improvement in performance

accuracy and stablity.

3. A non-equidistant graph model with high computational efficiency: As a gener-
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alization of the fully discretized non-iterative graph scheme, a new non-equidistant

graph model is futher proposed to solve a smoothness penelized likelihood cost

function. The optimal surface search for field map at each voxel is conducted in

a subset of the uniformly discretized field values, which are the local minimizers

of the voxel independent maximum likelihood cost function. The accommoda-

tion of only local minima set significantly reduces the graph connectivity, which

further decreases the computational time by an order of magnitude.

4. A multi-resolutional framework for the non-equidistant graph search algorithm:

A new multi-resolution framework to employ the non-equidistant graph search

algorithm was developed in this work to further achieve computational gains.

Global convergence of the predesigned cost function is consistently upheld in

the framework. The new framework successfully achieved 50% time reduction

in computational time compared to the initial non-equidistant graph model

proposed above.

1.3 Thesis Organization

The structure of the thesis is as follows:

• Chaper 2: Background: The chapter provides an overview of the multi-

echo fat water separation methods in MRI including the Dixon model and most

relevant previously proposed methods for estimating B0 inhomogeneity map.

In addition, basic concepts regarding the popular graph search framework will

also be discussed in this chapter. Both these respective aspects form the build-
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ing blocks of the developed novel methods for graph based fat water imaging

methods.

• Chaper 3: Fat water separation using GlObally Optimal Surface Esti-

mation (GOOSE): This method models the field map estimation as a smooth-

ness constrained optimization problem. The graph search is conducted in a fully

discretized graph model with global optimality. A 3D extension of the proposed

GOOSE is also introduced in this chapter. The proposed method and its ex-

tension are tested on various datasets for validation.

• Chaper 4: Fat water separation using Rapid GlObally Optimal Sur-

face Estimation (R-GOOSE): The chapter describes the novel non-equidistant

graph based method developed for fat water separation termed as Rapid GOOSE

(R-GOOSE). In particular, we formulate the field map estimation as a 3D op-

timization problem, where the proposed global criterion is the sum of the voxel

independent maximum likelihood measurement and a smoothness regularization

penalty term.

• Chaper 5: Fat water separation using multi-resolutional Rapid GlOb-

ally Optimal Surface Estimation (mR-GOOSE): The chapter focuses on

developing a new framework based on R-GOOSE that can further reduce the

computational complexity, while still preserving the global convergence of the

problem formulation. The smoothness regularized formulation in R-GOOSE

was adopted but we further exploited the field map smoothness and the vicin-
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ity of the local minima in spatial neigborhood by creating a multi-resolutional

pipeline in data flow.

• Chaper 6: Conslusions: This chapter provides summary of the thesis and

discusses the possible directions of future work.

Each chapter in this thesis consists of various notations and formulations. In

order to maintain consistency and ease of understanding for the reader, each chapter

related to a specific aim of this thesis shall reformulate the problem mathematically.

Certain terminologies are used interchangeably such as graph seach and optimal sur-

face estimation, chemical shift encoded fat water imaging and multiecho fat water

separation, fat water separation and fat water decomposition, as well as B0 inhomo-

geneity map and field map.
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CHAPTER 2
BACKGROUND

2.1 Introduction

In this chapter, we will first describe the Dixon model widely used for the

multiecho fat water separation. Then we will introduce different methods previously

proposed to solve for the Dixon model. We will mainly look at the most relavant

approaches including the classic voxel independent methods, morphological strategies

and the graph cut formulations. The last section describes the basic concepts of graph

search as a preparation for next chapters.

2.2 Dixon-based Model

We now review the mathematical expression of the Dixon signal model that is

essential for the discussion in later sections. In multiecho water and fat decomposition,

a sequence of images are collected with different echo time (TE) shifts, t1, t2, . . . , tN .

The signal at each individual voxel is described by the model in [40]:

s(r, tn) =

(
ρwater(r) + ρfat(r)

[
M∑
i=1

βi e
j2πδi tn

])
e−γ(r)tn , n = 1, . . ., N (2.1)

Here, ρwater(r) and ρfat(r) are complex-valued concentrations of water and fat, respec-

tively. The fat signal is modelled using an M peak model, where δi is the chemical

shift between the ith fat peak and water, measured in Hz, and βi > 0 is the rela-

tive weight of each peak. The relative weights add up to unity (
∑
βi = 1). The
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parameters βi and δi are assumed to be known; the decomposition process involves

the estimation of the unknown concentrations ρfat, ρwater, as well as f(r) and T ∗2 (r)

from the measured data. The field inhomogeneity induced frequency shift and T ∗2

decay terms are consolidated in the parameter γ(r) = [1/T ∗2 (r)− j2πf(r)]. Here,

f(r) is the local frequency shift due to magnetic field inhomogeneity at the spatial

location r = (x, y), while T ∗2 (r) models the decay due to intra-voxel dephasing. The

consolidation of the T ∗2 decays of fat and water into a single term is shown to reduce

bias and improved noise stability [40,41]. This model can be expressed in the matrix

form as:


e−γ t1 e−γ t1

(∑M
i=1 βie

j2πδi t1

)
..

e−γ tn e−γ tn
(∑M

i=1 βie
j2πδi tn

)


︸ ︷︷ ︸

Aγ

ρwater
ρfat


︸ ︷︷ ︸

g

=


s[1]

..

s[N ]


︸ ︷︷ ︸

s

. (2.2)

In the above equation, if the field inhomogeneity (f(r)) is known, or zero at

all locations in an ideal scenario, the problem is linear and it is trivial to recover

fat water concentrations ρfat and ρwater. However, as mentioned in Chapter 1, B0

inhomogeneity is unavoidable due to the magnet imperfections and susceptibility

artifacts. Therefore, the estimation of field map becomes the crux of solving for fat

water separation. Specifically, it poses four challenges:

1. Non-linearity of the signal model: The field inhomogeneity appears in the expo-

nential phase term e−γ(r)tn , making the problem ill-posed and the signal recovery
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non-trivial.

2. Ambiguity of the signal model: The signal model assumes both fat and water

signals at each location. However, there are pixles in multiecho images with

only fat or water component. In this case, only one of the two mathematical

solutions is correct when the model is fitted to measurements. See an example

in Figure 2.1.

3. Phase wrapping: The exponential phase term is periodic. Hence, there are more

than one correct solution in the signal model for field map estimation. Then

it requires additional constraints such as global smoothness of field map to

determine the corrent solution.

4. Large range of B0 field inhomogeneity: The B0 field variations increase as the

magnetic field strength continues to grow such as in 3T or above scanners. At

the same time, in objects with internal cavities such as lung images, abrupt

changes might appear in regions of transition between tissues and air. These

strong variations in B0 field present additional challenges for the fat water

separation problem.

2.3 Previously Proposed Methods

This section will review some of the most relevant methods for multiecho fat

and water separation. A key factor that differentiates these methods is how the field

smoothness assumption is formulated in the post processing steps.
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Figure 2.1: An example of ambiguity of the signal model. Suppose f(r) is the math-
ematical solution of the signal model. If the pixel contains both fat and water signal,
then the acutal field value f = f(r); If there is only water signal, the actual value is
still f = f(r); If there is only fat signal, then the actual field value is f = f(r)−∆.
∆ is the chemical shift between water and fat in Hz. However, additional prior in-
formation is needed to determine what the composition of signal model is at the
location.

In general, there are three major buckets of methods: 1) Voxel independent

methods such as the initial Dixon two-point method [38], the analytical three-point

technique [42] and the iterative decomposition of water and fat with echo asymmetry

and least-square estimation (IDEAL) [43]. These methods generally do not utilize the

assumption of field map smoothness, or consider a mild field inhomogeneity (close to

0). 2) Morphological approaches such at region growing [44,45], region merging [46],

and region based labeling [47,48]. This type of methods usually employ the smooth-

ness assumption as an anatomical, structural or heuristic prior in the estimation of

field map. 3) Graph cut method such as [41], which models the estimation as an



www.manaraa.com

12

energy minization problem and solve it using an iterative graph cut algorithm. There

are also many hybrid methods that combine two or more above mentioned strategies

to account for the field inhomogeneity [49–52].

Voxel independent methods

In [38] ‘simple proton spectroscopic imaging’, Dixon proposed the two-point method,

which is the first fat water separation method. The main idea is to acquire two im-

ages, one ‘in-phase’ when fat and water phases are aligned such as at the beginning

of the spin echo t0 = 0, and the other ‘opposed’ at the first time that fat and water

have the opposite phase (t1). Therefore, the measurement s(t0) is the summation of

fat and water signals and s(t1) is the difference between water and fat:

s(t0) = ρwater + ρfat

s(t1) = ρwater − ρfat

(2.3)

Then the water-only image is simply the addition of s(t0) and s(t1) while the fat-

only image is the subtraction of s(t0) and s(t1). The problem with this method is

the assumption of no field inhomogeneity present during data acquisition. Since the

magnetization (phase) changes drastically between the first and second data collect-

ing point, it is impossible to get a water and fat image by a simple addition and

subtraction. An absolute value was used instead of the complex valued image data

as a compensation. Further studies of two-point methods [53–55] focused on new

ways of B0 inhomogeneities correction. Following the same analytical strategy, a few
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methods were later proposed to improve the original two-point method by sampling

at three time points while the assumption of field variation can only be held to a

restricted range [42,56].

Both two-point and three-point methods have limitations including the restric-

tion of two or three echo times for data collection, inability to extend the method to

more metabolites and absence of large field inhomogeneity in the scheme. One way

to address these limitations is to model the field map estimation in a maximum like-

lihood framework. Specificially, the unknown parameters in Eq.2.2 can be obtained

by minimizing the least-square error between the model and the measured data [57]:

{ρwater, ρfat, γ} = arg min
ρwater,ρfat,γ

‖Aγg − s‖2. (2.4)

In order to solve the above least-square error minimization problem, the itera-

tive decomposition of water and fat with echo asymmetry and least-square estimation

(IDEAL) method was proposed by Reeder et al. in [43]. The method solves an it-

erative nonlinear least-square fitting problem at each voxel. The signal model use in

IDEAL is slightly different from Eq.2.1 and can be expressed as:

s(r, tn) =
M∑
i=1

ρi(r)e
j2πfi(r) tn , n = 1, . . ., N (2.5)

Here, the initial estimate of the field map is known and the amplitudes of metabolites

are complex values. Hence, the phase term is incorporated in the amplitude ρj.

By replacing the signal model with Eq.2.5, IDEAL solves a mamixmum likelihood
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formluation similar to Eq.2.4. IDEAL converts the nonlinear least-square problem to

a series of linear estimations by iteratively solving for the incremental pertubations to

the unknown parameters. The iterative process starts with an initialization of fi(r)

and ρi(r) (the real and imagery parts in actual calculation), then Eq.2.5 becomes

linear and can be solved by simple matrix operations. The entire process is continued

until the fitting error reaches a local convergence at this voxel.

The original IDEAL method has overcome the limitations of the two- and

three-point dixon models. It can take in more than three echo time shifts and ar-

bitrary number of metabolites in the model. It further allows complexed values in

the amplitude and solves the nonlinear model with an iterative and linearized pro-

cedure. However, one main disadvantage of this method is the solution converges to

local minima which often results in fat and water swaps. The maximum likelihood

framework is simply a data fitting model without taking into accout the assumption

of field map smoothness.

Morphological methods

In order to better account for the field inhomogeneity, an extension of IDEAL, a re-

gion growing scheme for IDEAL was proposed by Yu et. al in [45]. In this work, the

multiecho data is firstly downsampled and an initial estimate of the low resolution

field map is performed by using pixel independent fitting as in Eq.2.5. Then field map

smoothness is imposed by placing a ‘super-pixel’ in the low resolution field map as a

seed to start region growing. Berglund et. al in [44] also proposed a similar region
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growing strategy but with multiple seeds at different regions of the image.

Another morphological strategy often employed is to use multiresolutional hi-

erarchy in hopes to guide the field map estimation [51,58]. In general, multi-resolution

methods downscale the original images to a lower resolution, where analytical meth-

ods like IDEAL are performed to find out the voxel independent solution of field value

at each location as a coarse estimate. Then the coarse estimate of the low resolu-

tion field map is used as a navigating map for other morphological operations such

region growing [45], region merging [46] or region labeling [47] to propogate the low

resolution estimate to the finer resolution.

In general, morphological methods tend to have the following characteristics:

1. Downsampling for a coarse estimate. Many methods use different downsample

techniques to obtain a rough estimate of the field inhomogeneity map. The

benefit of this strategy is it can provide a reliable guidance to further oper-

ations for field estimation. Some studies even design a multilayer resolution

hierarchy to joint estimate the field map on the finest level, similar to the ‘ma-

jority vote’ idea. The computation for the entire algorithm can be saved by

computing the least-square fitting error in a low resolution scale of the origi-

nal data. One possible concern is low resolution estimate already exploits the

field map smoothness assumption, where the field variation should be little or

mild in a relatively small neighbohood. However, it might not be true if there

are non-anatomical cavities in the object region, or the field strength is simply

very strong. Therefore, the size of the downsampling factor coupled with the
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information of the scanned subject should be further studied.

2. Seeds planting for initialization. Seed planting is a key step in most morpho-

logical methods. The location and the number of seeds in the object depend

on different factors including the structure of the object in the image, the pre-

processing outcome (thresholding etc.) as well as the morphological operation

after planting the seeds (e.g. region growing). Overplanting or underplanting

seeds can both contribute to morphological artifacts in the results of field map

estimation, resulting in fat water swaps.

3. Global convergence vs. Local convergence. For uniformly sampled data, the pe-

riodicity of the voxel independent fitting error can be significant in the correction

estimation of field map. Many challenging datasets can have multiple local min-

ima and one global minimum in period. The initialization of the field map values

to start the iterative data fitting process is critical in determining whether the

final convergence is to a local or global minimum.

Overall, morphological methods have proven successful in many applications. It can

also face challenges with choices of downsampling factor, seeds planting and local

convergence, which further requires a fair amount of hand tuning of parameters.

Graph cut methods

Iterative graph cut algorithms were later proposed in solving the field map estima-

tion problem with improved performance [41,59]. Unlike morphological methods, [41]
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models the problem as an energy minimization formulation with an added smooth-

ness regularization term. Following Eq.2.4, [41] first decouples the parameters using

the VARPRO approach [60]. Specifically, the criterion is minimized with respect to

some of the variables by assuming the others to be fixed, thus eliminating them from

the optimization. Minimizing the above cost function with respect to the concen-

trations, assuming γ to be fixed, we obtain the optimal concentration estimates as

gopt = (AT
γAγ)

−1AT
γ s. Substituting the optimal concentrations back in Eq.2.4, and

solving for γ, we obtain

γ(r) = arg min
γ
‖Aγ(A

T
γAγ)

−1AT
γ s(r)− s(r)‖2︸ ︷︷ ︸

C(r,γ)

(2.6)

One can again minimize the expression with respect to T ∗2 to obtain a cost function

that is only dependent on f :

f(r) = arg min
f

min
T ∗
2

C(r, γ)︸ ︷︷ ︸
D(r,f)

(2.7)

Since the estimation of T ∗2 values does not suffer from ambiguities, an exhaustive

search over possible T ∗2 values is used to obtain Dr from Cr [60].

In order to address the sensitivity of the voxel-by-voxel optimization strategy

specified by Eq.2.7 to multiple feasible solutions and phase wrapping, Hernando et

al. [41] formulated the joint recovery of the field map at all the voxels as a smoothness

regularized optimization scheme. The global criterion is the linear combination of the
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sum of D(r, f) and a smoothness penalty [41]:

f̂ = arg min
f(r)

∑
r

D(r, f(r))︸ ︷︷ ︸
data consistency term

+µ
∑
r

∑
s∈N (r)

wr,s |f(r)− f(s)|2︸ ︷︷ ︸
smoothness regularization

. (2.8)

Here, N (r) is the local neighborhood of the voxel at location r and wr,s are pre-defined

weights that specify the relative importance of each difference term. The first term is

the sum of the voxel-independent criteria in Eq.2.7, while the second term promotes

field map smoothness. Hernando et al., convert the above continuous problem to a

discrete optimization scheme by restricting the field map to a set of discrete values.

The direct discrete minimization of Eq.2.8 using a graph cut algorithm is

computationally infeasible, since it involves a large and fully connected graph. Hence,

the authors solve it iteratively by solving a sequence of binary decision problems at

each iteration; these decision problems are solved efficiently using graph cut. At the

(n + 1)th iteration, they consider two possible solutions at each voxel: Γn+1(r) =

{fn(r), gn(r)}. Here, fn(r) is the optimal solution from the previous iteration, while

gn(r) is chosen as fn(r)±β , where β is a pre-specified constant, or picked randomly a

set of local minimizers of D(f(r)). Each binary decision problem is efficiently solved

using graph cut and is guaranteed to converge to a global minimum. However, the

iterative algorithm is still not guaranteed to converge to the global minimum of the

cost function. The local minima effects sometimes manifest as fat water swaps in

challenging datasets

We have so far reviewed three major classes of methods for field map estima-
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tion and fat water separation: voxel independent methods, morphological methods

and graph cut methods. These methods have been validated in a wide range of appli-

cations with proven successes. Many of the problem formulations proposed in these

methods have also inspired the work of this thesis and laid the foundation for some

of the concepts that will appear in later sections. What has remained challenging in

fat water separation are the following:

1. Large field inhomegeneity: Most of the state-of-the-art methods can obtain cor-

rect results of fat water separation in cases with reasonable field variation.

However, large field variations especially within a small region of the object

such as in liver or sinus can still cause iterative methods to fail due to incorrect

initializations.

2. Global minima vs. Local minima: It is still a challenge to provide consistent

convergence to global minima over local ones. This is particularly true for the

difficult datasets such as with large field inhomegeneity . Many methods can

provide global optimality in each step of a greedy strategy, but fail to guarantee

a global convergence of the overall greedy strategy.

3. Computational complexity: As MRI hardware continues to develop, MRI datasets

are becoming increasingly larger due to the higher resolution in all spatial di-

mensions and higher field strength such as 7T. This transfers into an increase

of data size as an overall trend. It also can cause an increase of sheer value in

the calculation of the least-square fitting model which possibly requires a large
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data storage in computation.

2.4 Graph Seach Methods

As noted earlier in Chapter 1, the terms graph search and optimal surface

segmentation method are used interchangebly, due to the popularity of the former

term (graph search) but both the methods refer to the same method [61].

Graph based methods have well studied in the field of computer vision [62–67].

Graph search (optimal surface segmentation) was initially published by Wu et al

in [68] where a graph based framework is proposed to solve for a multiple surfaces

segmentation problem. Since then graph search and its variations have been widely

used in many applications, especially various medical image segmentation applications

[69–82]. In general, the graph search framework transforms a discrete image/label

volume into a multi-column graph space where every voxel in the original volume

corresponds to a node in the graph. Nodes in the graph model are connected by

various edges. The combination of nodes and edges constitute the model of the

surface and possible prior constraints on graph connectivity. The purpose of the

graph connectivity and constraints is that the solution of the same using a minimum

st-cut [62] will provide the resultant surfaces.

Graph search methods [61,83] are robust schemes employed for optimal surface

segmentation of multiple globally optimal surfaces in volumetric datasets. For the

scope of this thesis, we will only focus on single surface segmentation/estimation.

The method is characterized as a model that segments both ‘terrain like’ and ‘closed’
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surfaces with global optimality with pre-defined constraints. Through the method

is extensible to the segmentation of more complex topologies with different prior

assumptions [84], we will briefly discuss the method for segmenting single terrain like

surface in a 3D image volume represented as a cube.

Consider a volumetric image I(x, y, z) of size X × Y ×Z. A surface is defined

as a function S(x, y), where x ∈ x = {0, 1, ...Nx − 1}, y ∈ y ={0, 1, ...Ny − 1} and

S(x, y) ∈ z = {0, 1, ...Nz − 1}. Each (x, y)-pair corresponds to a column of voxels

{(I(x, y, z)|z = 0, 1, . . . , Z − 1}, denoted by col(x, y) parallel to the z-axis. We use r1

and r2 to denote two neighboring (x, y)-pairs in the image domain x × y and Nr to

denote the neighborhood setting of image domain. The function S(r) can be viewed

as labeling for col(r) with the label set z (S(r) ∈ z).

The method enables the incorporation of the following prior information. First,

the likelihood of a voxel belonging to a given surface S where the inverse likelihood

for each voxel is encoded in the graph and is termed as the data cost on each node.

Second, the smoothness of a given surface S which is defined as the maximum allowed

‘jump’ of any two adjacent nodes on a feasible surface in a given direction (‘hard con-

straint’). These constraints are incorporated by adding inter-column edges between

nodes of a pair of neighboring columns in graph G for surface S. The surface function

S(r) intersects col(r) at one and only one single voxel location. The objective of the

method is to find a globally optimal surface S(x, y) in I subjected to prior informa-

tions of node costs and certain pre-defined constraints encoded on edges. A single

minimum st-cut is then computed on graph G to obtain the target surface estimation
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S.

The surface smoothness
∑

(r1,r2)∈Nr1
Vr1r2(S(r1), S(r2)) as shown in Eqn 2.9,

dictates the feasibilty of surface locations between two neighboring columns. The sur-

face smoothness term then is modeled as a hard constraint and specifies the maximum

possible difference between surface positions of two neighboring columns.

Vr1r2(S(r1), S(r2)) =


∞, if |S(r1)− S(r2)| > α,

0 , otherwise

(2.9)

where α is the hard constraint imposed for surface smoothness.

An important advantage of the graph search model is its adaptibility to the

use of various cost function formulations. For example, a smoothness constrained

formulation can be modeled as a graph search problem with only node costs (for data

consistency error) while edge connectivity imposes the smoothness constraint. At the

same time, a smoothness penalized formulation can be constructed as a graph model

with both node and edge costs, where the smoothness penalty can be designed with

many variations depending on applications. Alternatively, the surface smoothness∑
(r1),S(r2)∈Nr1

Vr1r2(S(r1), S(r2)) as shown in Eqn 2.10, dictates the feasibilty of sur-

face locations between two neighboring columns. The surface smoothness term then

is modelled as a ‘soft constraint’ and specifies the possible penalty an edge connection

needs to pay between surface positions of two neighboring columns.

Vr1r2(S(r1), S(r2)) = w × f(S(r1)− S(r2)) (2.10)
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Figure 2.2: (left) Surface smoothness constraint for two neighboring columns r1 and
r2 for a surface S. The arcs show the feasible st-cut for a given surface position S(r1)
for column r1. (right) Surface smoothness penalty for two neighboring columns r1
and r2 for a surface S. The arc shows a st-cut for a given surface position S(r1) for
column r1. The smoothness cost for the given cut is w × f(S(r1)− S(r2)).

where f(S(r1)− S(r2)) is a convex function, defining the soft constraint imposed for

surface smoothness. The coefficient w can be used as a tuning parameter to control

the degree of regularization of the surface (provides for a balance between the data

cost term and the surface smoothness term). Example of the surface smoothness and

surface separation constraints are shown in Figure 2.2.

Last but not least, the graph method guarantees global optimality with

respect to the different constraint formulations employed. This is critical because

this can guarantee a constistent and reliable solution to many optimization problems

where many iterative methods can only achieve local optimality.
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CHAPTER 3
FAT WATER SEPARATION USING GLOBALLY OPTIMAL

SURFACE ESTIMATION (GOOSE)

3.1 Introduction

As we discussed earlier in Chapter 2, the estimation of field map inhomogeneity

in the problem of fat-water decomposition is challenging especially in cases with large

presence of field variations, anatonmical cavity such as in lung images, or regions of

low signal to noise ratio. Traditional methods rely on voxel-by-voxel fitting of the

signal model to the measured data [38, 42, 43]. The voxel-by-voxel fitting approach

suffers from the non-convexity of the associated maximum likelihood criterion, which

makes iterative algorithms such as iterative decomposition of water and fat with

echo asymmetry and least-squares estimation (IDEAL) [43] sensitive to field map

initializations. The estimation is also made difficult by the presence of phase wraps

in body regions with large field inhomogeneity and ambiguities in voxels with only

one metabolite (e.g. water-only voxels), which manifest as spurious fat water swaps

in the decompositions.

Graph based methods have shown promising results in such cases with the

idea of global optimization. For example, Hernando et al. in [41] formulated the

estimation problem as the minimization of a global criterion, which is the linear

combination of the sum of the voxel-independent criteria and a field map smoothness

penalty, and solve it using an iterative graph cut algorithm. Specifically, a one-layer

graph is constructed at each iteration; the vertices at each voxel correspond to the
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frequency value at the previous iteration and a new guess. The global optimum of this

one-layer graph problem is obtained using efficient s-t cut algorithms [63, 64, 85–88].

While this iterative approach is computationally efficient, the whole algorithm is not

guaranteed to converge to the global minimum of the specified cost function.

The main focus of this chapter is to introduce a novel non-iterative graph al-

gorithm for fat water decomposition. We first formulate the recovery of the field map

at all the image voxels as a constrained optimization scheme. The proposed global

criterion is the sum of the voxel independent maximum likelihood criteria. While this

global optimization scheme is similar to that of Hernando et al. [41], the main differ-

ence is the lack of smoothness penalty term in our global criterion. We instead rely

on constraints to enforce the smoothness of the field map. Specifically, the differences

in field map between adjacent voxels are constrained in a small range. The discretiza-

tion of this problem yields a graph optimization problem, where each vertex of the

graph is constrained to be connected with a small number of its neighbors. Thanks to

the reduced connectivity, the three-dimensional graph search problem can be directly

solved using an optimal surface segmentation algorithm [88] in a realistic run time.

The non-iterative algorithm is guaranteed to converge to the global minimum of the

constrained optimization problem.

In the following sections, we first briefly review the background of the math-

ematical presentation of the problem formulation. Then the smoothness constrained

formulation for field map estimation is introduced. In particular, the discretization

of the volumetric field map space is described for the graph construction. Next, we
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compare the proposed algorithm against several state-of-the-art fat water decompo-

sition algorithms available in the ISMRM fat water toolbox on several challenging

cases. These datasets are made available as part of the 2012 ISMRM Challenge. The

qualitative and quantitative comparisons demonstrate that the proposed scheme is

capable of minimizing fat water swaps in these challenging cases.

3.2 Background

We now briefly review the signal model and the problem formulation in the

graph cut algorithm. In gradient echo acquisitions, the signal is collected in a succes-

sion of echo time (TE) shifts, t1, t2, . . . , tN . At each location r = (x, y, z), it can be

expressed as a combination of fat and water components. The matrix form can be

expressed as:


e−γ t1 e−γ t1

(∑M
i=1 βie

j2πδi t1

)
..

e−γ tn e−γ tn
(∑M

i=1 βie
j2πδi tn

)


︸ ︷︷ ︸

Aγ

ρwater
ρfat


︸ ︷︷ ︸

g

=


s[1]

..

s[N ]


︸ ︷︷ ︸

s

. (3.1)

In Eq.3.1, the model contains one water peak and M fat peaks, each of which has

a chemical shift δi to the water peak. ρwater, ρfat are the complex valued concen-

trations of water and fat and βi denotes the relative weight of each peak. γ(r) =

[1/T ∗2 (r)− j2πf(r)], represents the combined effect of the local frequency shift f(r)

due to the static field inhomogeneity and the T ∗2 decay. Assuming that βi and δi are

known [40], the unknowns ρwater, ρfat and γ(r) (f(r) and T ∗2 ) at each voxel can be
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obtained by minimizing the least-square error between the model and the measured

data ‖Aγg − s‖2. The estimation of T ∗2 can be achieved through an independent

search over a reasonable range of discrete T ∗2 values [41]. For a specific value of f(r)

and T ∗2 (r), the concentrations ρwater and ρfat can be obtained as g = (AT
γAγ)

−1AT
γ s.

Substituting the optimal values for a specific frequency back, we obtain:

f̂(r) = arg min
f(r)

min
ρwater,ρfat,T

∗
2

‖Aγg − s‖2︸ ︷︷ ︸
D(f(r))

(3.2)

Here, D (f(r)) is the voxel independent maximum likelihood prior. In order to ad-

dress the sensitivity of the voxel-by-voxel optimization strategy specified by Eq.3.2 to

multiple feasible solutions and phase wrapping, Hernando et al. [41] formulated the

joint recovery of the field map at all the voxels as a smoothness regularized optimiza-

tion scheme. The global criterion is the linear combination of the sum of D(r, f) and

a smoothness penalty [41]:

f̂ = arg min
f(r)

∑
r

D(r, f(r))︸ ︷︷ ︸
data consistency term

+µ
∑
r

∑
s∈N (r)

wr,s |f(r)− f(s)|2︸ ︷︷ ︸
smoothness regularization

. (3.3)

Here, N (r) is the local neighborhood of the voxel at location r and wr,s are pre-

defined weights that specify the relative importance of each difference term. The

first term is the sum of the voxel-independent criteria in Eq.3.2, while the second

term promotes field map smoothness. Hernando et al., convert the above continuous

problem to a discrete optimization scheme by restricting the field map to a set of
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discrete values. At the (n + 1)th iteration, they consider two possible solutions at

each voxel: Γn+1(r) = {fn(r), gn(r)}. Here, fn(r) is the optimal solution from the

previous iteration, while gn(r) is chosen as fn(r) ± β , where β is a pre-specified

constant, or picked randomly a set of local minimizers of D(f(r)). Each binary

decision problem is efficiently solved using graph cut and is guaranteed to converge

to a global minimum. However, the iterative algorithm is still not guaranteed to

converge to the global minimum of the cost function.

3.3 Smoothness-constrained Problem Formulation

We now propose a new way to formulate the estimation of the field map f(r)

as the constrained optimization scheme:

f̂ = arg min
f(r)

∑
r

D (r, f(r)) such that

|f(r + ex)− f(r)| ≤ F

|f(r + ey)− f(r)| ≤ F, (3.4)

where ex = (1, 0) and ey = (0, 1) are the unit vectors in the x and y directions,

respectively. Instead of the smoothness penalty on the field map used in [41], we

constrain the differences between field map values at adjacent voxels to be less than

F (Hz) to minimize the ambiguities. Decreasing the maximum step size will result in

a smoother field map. Note that Eq.3.4 simplifies to a fully decoupled voxel-by-voxel

search when the restrictions are removed (i.e, F = ∞). Since the above problem is

non-convex, simple gradient descent schemes are not guaranteed to converge to the
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global minimum of the criterion.

We discretize the problem by restricting the possible field map values at each

location to a uniform grid specified by f = n∆. Here n = −Nmax, ..., Nmax − 1 is

the discrete index and ∆(Hz) is the grid spacing. The discretization error can be

controlled by setting ∆ sufficiently small. The discrete optimization scheme is thus

equivalent to fitting a smooth surface S to the 3-D discrete dataset D(r, f) (see Fig.

3.1.(a)); the height of the surface at the spatial location r is f(r). The number of

discrete points in the surface is equal to NxNy, where the image is assumed to be of

size Nx×Ny. Overall, the summation in Eq.3.4] is essentially the sum of the values of

the 3-D function D(r, f) along the surface. The function D(r, f) can be interpreted

as the negative of the likelihood that the surface passes through the point (r, f). The

likelihood of the surface is obtained by summing the likelihoods of the points on the

surface.

The constraints in Eq.3.4] can be conveniently expressed by representing the

discrete dataset as a connected graph G(V,E) (Fig. 3.1.(b)), where V denotes the set

of vertices and E are the edges. Correspondingly, the size of the graph is Nx×Ny×Nf ,

where Nf = 2Nmax is the number of layers in the graph (the number of discrete field

map values). We have one vertex for each discrete point (r, n), while the edges of the

graph (denoted by E) are specified by the constraints in Eq.3.4. Specifically, an edge

exists between the vertex (r, n) and (r′, n′) if and only if |n − n′| ≤ α, with α is the

smoothness constraint in the graph and r and r′ are neighbouring voxels; the four

neighbors of the voxel r are (r+ex), (r−ex), (r+ey), and (r−ey). If we let Rf denote
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the complete search range of the uniform grid (Hz), then F = α ∆, ∆ = Rf/Nf . It

can be seen that a graph surface S is a subset of V if only if it satisfies the constraints

in Eq.3.4. This enables us to rewrite Eq.3.4 as

Ŝ = arg min
S⊂G

∑
v∈V (S)

D (v)︸ ︷︷ ︸
E(S)

. (3.5)

In the above equation, V (S) are the vertices of the surface. Note that each vertex

is a point in 3-D: v = (r, f). In the next subsection, we introduce the graph cut

algorithm to solve Eq.3.5.

3.4 Global Optimization using Graph Search

In [89], Wu and Chen have shown that the optimal surface estimation problem

can be transformed to the detection of a minimum-cost closed set in a transformed

graph. A closed set A in a directed graph is a subset of graph vertices such that there

is no edge from a vertex in A to a vertex in its complement Ac (Fig. 3.2.(a)). The

cost of the closed set A is defined as the total sum of the costs of all vertices in A.

The transformation of the original problem to minimum-cost closed set enables us to

solve Eq.3.5 using efficient polynomial time s-t cut schemes [90,91]. This approach is

akin to transformation of a surface integral to a volume integral using Gauss theorem

in the context of parametric snakes [92].

The key step in the graph transformation is the identification of a closed set

B(S), which has a one-to-one mapping with a surface S. For a feasible surface S,
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Figure 3.1: (a) Illustration of the graph cut algorithm. The residues specified by
D(r, f) are discretized on a uniform frequency grid n∆;n = −Nmax, ..., Nmax−1. The
discrete optimization is essentially a surface detection problem on a graph with 2Nmax

layers, where the residues at each vertex are the vertex costs. Note that there are
both local and global minimal costs in the graph. In this example the local minimal
cost at f1 are very close to the global minimal cost at f2, for which voxel-independent
schemes mostly fail. (b) Illustration of the constraints in graph-cut optimization.
Each vertex on a specific voxel is connected with (2α + 1) neighbors. For example,
the vertex a at the spatial location (x, y) is only connected with b1, b2, and b3 in
the column corresponding to its neighbouring voxel (x + 1, y). Similarly, it is only
connected to (2α+1) neighbors in the voxel (x, y+1). S is the surface that intersects
one voxel at each column within the smoothness constraint. The objective of the
graph cut optimization is to search for the surface with minimal costs.

we define B(S) as the set of all the vertices of G that are on or below S. It can

be observed that for any feasible surface S in G, the bottom-most neighbors of every

vertex in B(S) are also contained within B(S). The bottom-most neighbour of a

vertex v ∈ V is the vertex in the neighboring column with the smallest f -coordinate,

which can co-exist with v on a feasible surface (See Fig. 3.2.(b)). We also transform

the cost of each vertex in the graph G (denoted by D′):

D′(r, n) =


D(r, n) if n = −Nmax

D(r, n)−D(r, (n− 1)) else.

(3.6)



www.manaraa.com

32

Note that D′(r, n) is essentially the derivative of D(r, n) along the frequency direction,

with the appropriate boundary conditions. We can recover the value of D from D′

as D(r, n) =
∑n

l=−Nmax
D′(r, n). Using this property [89], we can rewrite the surface

sum
∑

v∈V (T )D (v) in Eq.3.5 as

E(S) =
∑

(x,y,n)∈B(S)

D′(x, y, f) (3.7)

Thus, instead of finding the optimal surface S∗ directly, we seek the closed set B(S∗)

with the minimum cost E(S∗), which uniquely defines the surface S∗ . The algorithm

to solve Eq.3.7 proceeds by creating a directed vertex-weighted graph G′(V ′, E ′) from

G(V,E) [89]. The vertices v′(x, y, f) ∈ G′ has a one-to-one correspondence with the

vertices v(x, y, f) in G. Arcs (directed edges) are added to G′ to make sure that

each closed set in G′ includes all the vertices associated to the corresponding surface

vertices plus all the “lower” vertices in G. This is done by adding two types of arcs:

intracolumn arcs and intercolumn arcs. The intracolumn arcs ensure that all vertices

below a given vertex (within one column) are also included in the closed set. The

intercolumn arcs ensure that the smoothness constraints are satisfied.

As an example in Fig. 3.2.(c), we will consider the added arcs for one vertex

v′. It will be associated with two intracolumn arcs: one directed towards the vertex

immediately below it in the column and one from the vertex immediately above it.

Two intercolumn arcs will also exist for each neighbouring column in the x-direction

(y-direction): one directed to the bottom-most neighbour of v′ on the neighbouring
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column and one from the vertex on the neighbouring column whose bottom-most

neighbour on the column of v′ is vertex v′. We do not show the boundary conditions

to avoid cluttering the exposition of the key ideas. An outline of the algorithm is also

described in the pseudo-code below.�

�

�

�

Algorithm 3.4.1: Graph search for optimal field map (D(x, y, f))

1. Construct 3D graph G(x, y, f) and assign costs D(x, y, f) to each node

2. Transform the surface estimation to closed set estimation: G→ G′

a. Transform cost at each node to D′(x, y, f) using [3.6]

b. Build intra- and inter-column edges

3. Solve for the optimal closed set using minimum s-t cut algorithm

4. Recover the optimal surface S∗ and refine the solution

Once the optimal surface is determined using maximum flow/s-t cut algorithm

on the transformed graph G′, the solutions are refined by searching on a finer grid

in the range [f(r) −∆, f(r) + ∆] (see Fig. 3.3). This search minimizes the effect of

discretization. Since the search is constrained in the specified frequency range, the

search is computationally inexpensive and the solution is still guaranteed to satisfy

the constraints in [3.4]. We also determine the optimal R∗2 for each frequency value

by an exhaustive search.
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Figure 3.2: Illustration of the concepts in graph cut optimization. (a) Closed set:
vertices a, b and c do not form a closed set, because vertex d which is a successor of
b and c is not in the set. Nonetheless, vertices d, e and f form a closed set. (b) An
example of bottom-most neighbour. Vertex a is on the surface, b is an bottom-most
neighbour of a. Similarly, c is a bottom-most neighbour of b. (c) The task of finding
an optimal surface S∗ is transformed into finding the minimum-cost closed set B(S∗)
(indicated as gray vertices) beneath S∗ in the directed graph G′.

3.5 3D GOOSE Formulation

Since GOOSE still processes images slice by slice, we also extend the con-

strained optimization scheme in GOOSE into 3D:

f̂ = arg min
f(r)

∑
r

D (r, f(r)) such that

|f(r + ex)− f(r)| ≤ F

|f(r + ey)− f(r)| ≤ F (3.8)

|f(r + ez)− f(r)| ≤ F (3.9)

where ex = (1, 0), ey = (0, 1) and ez = (0, 1) are the unit vectors in the x, y and

z directions, respectively. Now the smoothness constraint is applied in all three

spatial dimensions. Since the graph construction and optimal surface estimation are

fundamentally the same as GOOSE, we do not repeat the process here.
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3.6 Experiment Design

3.6.1 Implementation details

We use a six peak fat model, where the location of the peaks, denoted by δi

in Eq3.1 correspond to 3.8 ppm, 3.4ppm, 2.6 ppm, 1.93 ppm, 0.39 ppm, -0.6 ppm

for all the experiments. The relative weights of these peaks, denoted by βi in Eq.3.1

are 0.0870, 0.693, 0.1280, 0.0040, 0.0390, 0.0480, respectively. These parameters are

adopted from [40].

We use a discrete search procedure to determine D(r, f) from C(r, γ) according

to Eq.3.2. This approach similar to the one followed in [41]. Specifically, for each

value of f , we search over Nr discrete values of R∗2 in the range 0 s−1 to 500 s−1. This

search process introduces minimal biases since the criterion is considerably smoother

along the R∗2 dimension. We set the field map search range Rf to be [-8 ppm, 8 ppm].

Our experiments show that this search range is large enough to account for the range

of field maps. The criterion specified is computed on a voxel-by-voxel basis. The

optimal field map surface is then obtained by running the graph cut algorithm on

the discretized problem. The discrete field map derived using the above algorithm is

refined to minimize the effect of discretization. The refinement process involves an

exhaustive search in the frequency range [f(r)−∆, f(r) + ∆] and the R∗2 range. The

range is discretized with approximately a 1 Hz spacing and exhaustively searched to

obtain the minimum. The same rule applies to the refinement of R∗2 . Finally, the fat

and water volumes are estimated by solving gopt = (AT
γAγ)

−1AT
γ s; the fat volume

fraction is then obtained from the derived concentrations. Since the proposed scheme
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Figure 3.3: Information flow in the proposed method. The residue specified by D(r, f)
in Eq.3.2 is discretized on a uniform grid. The global optimum of the proposed
constrained optimization problem is obtained using a globally optimal graph cut
optimization to yield the initial field map and the initial R∗2 = 1/T ∗2 map. This
solution is refined using a finer discrete search around the initial results provided by
the graph cut algorithm. The refined field maps are used to estimate the fat water
concentrations as gopt = (AT

γAγ)
−1AT

γ s.

is currently only implemented in 2D, each of the slices in multi-slice datasets are

processed separately. See Fig. 3.3 for the data flow in the proposed scheme.

3.6.2 Metric used for the comparisons

We use the same metric as in 2012 ISMRM Challenge to evaluate the perfor-

mance of the proposed algorithm as well as other state-of-the-art algorithms. Specif-

ically, the performance of the algorithm is specified by the score

Score =

∑Nvoxels
i=0 (|FF(i)− FFref(i)| < 0.1) ∗ P (i)∑Nvoxels

i=0 P (i)
× 100%, (3.10)

where FF is the fat fraction obtained from the specific algorithm and FFref is the

reference fat fraction. The fat fraction is defined as the ratio of fat intensity to the
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sum of fat and water intensities. In the above equation, P is the mask, and Nvoxels

is the total number of voxels. The multiplication factor is to obtain the scores in

percent.

The decompositions obtained by the proposed scheme were also evaluated by

an expert radiologist on a four point scale. The scales were chosen as (1): too many fat

water swaps & not diagnostic quality, (2): few swaps & may be clinically misleading,

(3): few swaps, but not clinically misleading, (4): no swaps & good quality.

3.6.3 Optimization of parameters

As mentioned in theory section, the proposed algorithm is dependent on three

parameters:

1. Nf , the number of layers used in the graph optimization,

2. Nr, the number of discrete values of R∗2, prior to graph optimization, and

3. α, the smoothness constraint assumed in the graph optimization; F = α∗Rf/Nf .

We determine the optimal parameters by running the proposed algorithm with differ-

ent parameter choices and comparing the scores of the resulting decompositions with

the reference fat water ratios on the first four datasets.

3.6.4 Comparison of algorithms

We compare the proposed scheme with the implementations of the current

algorithms available in the ISMRM fat water toolbox. Specifically, comparisons are

performed between the proposed method and four state-of-the-art fat water algo-
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rithms: Iterative Graph Cut Algorithm (IGCA) in [41], Safest-first Region Growing

Algorithm (SRGA) in [44], Golden Section Search Algorithm (GSSA) in [45], and Hi-

erarchial IDEAL of Multiresolution Field map (HIMF) algorithm in [52]. We assumed

the default parameters provided in the toolbox for all the comparisons.

3.6.5 Datasets used for the experiments

Seventeen multi-echo datasets used in this study are distributed as part of

2012 ISMRM Challenge. The multi-slice coil-combined datasets correspond to differ-

ent anatomical regions and were acquired on different institutions and different field

strengths (1.5 and 3T). See Table 3.1 for details of these datasets. The reference fat-

fractions and the masks corresponding to the image regions, where the fat fractions

are compared, were downloaded from 2012 ISMRM Challenge website. The reference

fat fractions were derived from larger number of echoes (typically 12-16 echoes) using

the iterative graph cut algorithm [41]. The masks were generated by thresholding the

raw images, followed by manual segmentation and binary morphological operations

to exclude isolated voxels and to erode edges which are likely to be partial volume

voxels. These masks were checked by an expert for validity. The number of echoes

that are used for the proposed decomposition and comparison with other methods

varied between the datasets, as shown by the second row in Table 3.1. All datasets

were processed on a desktop computer with 3.2GHz Intel Xeon CPU and 23.6GB

RAM.
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Table 3.1: Details of the datasets used in the validation. The rows correspond to
# TE: number of echoes used by the decomposition, MinTE (ms): minimum TE
value, MaxTE (ms): maximum TE value, Field: field strength of the magnet, the
anatomical region, Size/x: the matrix size in x, Size/y: matrix size in y, and #Slices:
total number of slices in the dataset.

3.7 Results

We study the effect of the parameters Nf and Nr in Fig. 3.4.(a) and the effect

of the smoothness constraint in Fig. 3.4.(c). We observe that the scores vary in a small

range when α ≤ 3. The performance degrades when α > 3. This is expected since the

algorithm becomes similar to voxel-independent schemes with increasing α. Since the

optimal performance is obtained at this value, we set α = 3 in all the experiments.

Specifically, the average scores from the first four datasets are obtained for different

values of Nf and Nr, assuming α = 3; the plot for different choices are shown in Fig.

3.4.(a). We observe that the algorithm is relatively insensitive to the choice of Nr,

while the optimal performance is achieved around Nf = 100. Therefore, as we chose

field map search range as [-8pm, 8pm], the grid spacing δ is approximately 10Hz for

a field strength of 1.5 T and 20Hz for 3 T. Note that the constraint on the field map

gets stronger as we increase Nf since F is inversely proportional to Nf . This explains

why the scores drop slightly when Nf is increased beyond 100. Based on this study,
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Figure 3.4: Dependence of the solution on the parameters. In (a), the number of
f grid points (Nf ) and R∗2 points (Nr) are varied and the resulting average scores
are plotted. It is observed that the results are not too sensitive to Nr, while the
best scores are obtained for Nf ≈ 100. The average run time of the algorithms are
shown in (b). For the parameters that yielded the maximum, the average run time
is approximately 90 seconds. The effect of the smoothness constraints on the scores
are shown in (c). Here, we assume Nf = 100 and Nr = 20. We observe that the best
results are obtained when α = 3 (i.e., 7 neighbors).

we fix Nf = 100 and Nr = 20 in the rest of the paper. Note that the computational

complexity of the algorithm is dependent on Nf and Nr. The refinement is conducted

in two steps: a) The field map values in the range of [f(r) − ∆, f(r) + ∆] at each

location are exhaustively searched with a 1 Hz resolution, assuming the R∗2 values

from the first pass. b) Once the optimal frequency is determined, the R∗2 values

are similarly searched exhaustively with a 1 ms−1 resolution. We plot the average

computation time for the different choices in Fig. 3.4.(b). The average computation

time for a 256x256 sized image is 90 seconds. These optimized parameters from the

first four datasets are used for all the experiments. The quantitative comparisons

of the GOOSE algorithm against the leading algorithms in the fat water toolbox

(IGCA, SRGA, and HIMF schemes) are shown in Table 3.2. The GSSA algorithm

often results in higher errors and hence were excluded from the studies. The SRGA

algorithm is designed for uniformly spaced echoes and hence could not be run on

dataset #3; the score is marked as N/A. The best score in each case is shown in
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Table 3.2: Quantitative comparison of the proposed scheme against state-of-the-art
algorithms and qualitative evaluation by a radiologist. The first row of each algorithm
indicates quantitative scores (in percent) for the 17 datasets. The second row of
each algorithm indicates the average qualitative score (out of four) assigned by the
radiologist. The best scores for each dataset are marked in bold. Note that SRGA
works only on uniformly sampled dataset and dataset #3 is non-uniformed sampled.
Therefore no score is reported from SRGA for dataset #3.

bold. It is observed that the proposed scheme provides better results in most of the

challenging cases. While it provides slightly lower scores in dataset #11 and dataset

#14, the scores are very close to the best performing algorithm. The qualitative scores

of the decompositions obtained by the proposed algorithm by the expert radiologist

are also reported in the last row of Table 3.2. The qualitative scores agreed with

the quantitative scores overall. The main inconsistency was in the context of dataset

#9, where the quantitative scores were high. The low qualitative scores were mainly

due to the presence of small swaps in the trabecular bone regions with low signal

intensity. None of the current algorithms were capable of avoiding these small swaps

from limited number of echoes. The decomposition obtained from the five algorithms

on a foot dataset (dataset #7) is shown in Fig. 3.5. This is a rather challenging

dataset due to the large range of field inhomogeneity. It is seen that IGCA, GSSA,

HIMF suffer from fat water swaps near the ankle. Similarly, GSSA and HIMF have
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Figure 3.5: Qualitative comparisons of the algorithms on a foot dataset (2012 Chal-
lenge dataset #7). Top row: Fat; Second row: Water; Third: Field map. Fat water
swaps are seen in IGCA, GSSA and HIMF indicated by arrows. The proposed and
SRGA scheme are seen to provide good decompositions, which is also evident from
the quantitative scores in Table 3.2 (also shown at the top left corner of each fat
image).

more swaps on both leg and toe region. The field maps derived by these algorithms

(see bottom row) exhibit abrupt variations indicating convergence to local minima.

We observe that the SRGA algorithm, as well as the proposed scheme, is capable of

providing good estimates in this example. A noticeable difference in the field map

recovered by the proposed scheme is that it takes small values outside the anatomical

region. This can be attributed to the constrained formulation [3.4]. Specifically, the

data-consistency term D(r, f) is considerably smaller in amplitude in regions with

low signal than regions with signal. Hence, many different values of f may give the

same cost. The constrained formulation will pick one solution among the possible

ones that satisfy the constraints. Due to the transformation [3.6], the solutions at

these voxels often correspond the first few nodes at these voxels. Another example,
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Figure 3.6: Qualitative comparisons on a head and neck dataset (2012 ISMRM Chal-
lenge dataset #2). Top row: Fat; Second row: Water; Third: Field map. All of the
algorithms except the GOOSE scheme result in swaps between water and fat. Quan-
titative comparison can be seen from Table 3.2 (also shown at the top left corner of
each fat image).

corresponding to the head/neck and upper thorax dataset (dataset #2) is shown

in Fig. 3.6. This set is challenging due to the larger magnetic field inhomogeneity

and multiple disconnected regions. From Fig. 3.6, we observe that all algorithms,

except the proposed method, suffers from multiple fat water swaps in the region under

neck. The failure of the SRGA scheme, which performed well in the other datasets,

may be due to the disconnected nature of the regions and the large dynamic range;

these challenges probably make the accurate seed placement in the region-growing

algorithm difficult.

Fig. 3.7 shows the decomposition on an axial liver dataset (dataset #12). We

observe that the existing schemes result in swaps in all the three slices, while the

proposed scheme correctly recovered the fat and water in slices 1 & 3. The GOOSE

algorithm also failed in slice 2, resulting in a swap. The main reason for the failure of



www.manaraa.com

44

Figure 3.7: Comparison of the algorithms on 2012 ISMRM Challenge dataset #12.
First column: Fat Fraction (FF) map for reference from 2012 ISMRM Challenge com-
mittee; Second: FF from SRGA; Third: FF from IGCA; Fourth: FF from GOOSE;
Fifth: Field map from GOOSE. Each row corresponds to one slice in the dataset.
This is a challenging example due to the disconnected regions in the dataset. We
observe that all algorithms except the proposed one result in swaps in all the slices.
The proposed scheme is capable of recovering the fractions correctly in slices 1 & 3
(first and third row), while it results in a swap in the second slice.

the GOOSE algorithm in this case is that the anatomical regions are disconnected; the

algorithm is not able to propagate the correct solution to the region of failure. This is

a fundamental problem associated with algorithms that exploit field map smoothness.

Fig. 3.8 shows the fat water decomposition of two slices of a breast dataset

(dataset #15). The IGCA scheme resulted in large and obvious swaps, while the

SRGA method resulted in subtle swaps, indicated by arrows. The GOOSE scheme

is capable of providing results that are in good agreement with the ground truth in

most regions. It resulted in a small swap in the middle, which is also indicated by

arrows. In addition, the proposed 3D-GOOSE method employs a three-dimensional

graph search scheme that also takes into account the field map smoothness across
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Figure 3.8: Comparison of the algorithms on a breast dataset (2012 ISMRM Challenge
dataset #15). First row: Fat Fraction (FF) map for reference from 2012 ISMRM
Challenge committee; Second: FF from IGCA; Third: FF from SRGA; Fourth: FF
from GOOSE; Fifth: Field map from GOOSE. Each column corresponds to one slice
in the dataset. IGCA results in large and obvious swaps. In contrast, the SRGA
scheme results in several subtle swaps pointed by arrows.

slices. For example, we were not able to correct a small fat-water swap in one slice

of the above breast dataset in GOOSE, whereas the separation is correct on all slices

using 3D-GOOSE. Results can be seen in Fig. 3.9.

3.8 Discussion

We introduced a novel fat water decomposition scheme, which we term as

globally optimal surface estimation (GOOSE) algorithm. The proposed algorithm

uses explicit constraints to exploit the smoothness of the field map, thus minimizing

the ambiguities in maximum likelihood estimation. Specifically, the differences in the

field map between adjacent voxels are constrained to be within a small range (less

than 25Hz). The discretization of the criterion yields a problem that can be efficiently

solved using graph cut optimization. Thanks to the considerably reduced graph
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Figure 3.9: Comparison of the GOOSE and 3D-GOOSE on a breast dataset (2012
ISMRM Challenge dataset #15). In contrast, the small fat water swap scheme in
GOOSE is corrected by 3D-GOOSE pointed by arrows.

connectivity, the algorithm is guaranteed to yield the global minimum of the cost

function in a short computation time. While the algorithm shares some similarities

with the global optimization scheme of Hernando et al. [41], the key difference is

the constrained formulation. The global optimality guarantees of the algorithm are

seen to be beneficial in practical settings. We have compared the proposed algorithm

against some of the algorithms available in the ISMRM fat water toolbox. Overall,

the comparisons show that the proposed scheme yields fewer swaps and thus better

fat water decompositions. The algorithm is also evaluated independently by the 2012

ISMRM challenge committee; the decompositions using the GOOSE scheme resulted

in scores that were only 0.04% lower than the winning team [93], which combined

the results of several decomposition schemes in the ISMRM fat water toolbox using

a perceptual quality metric [93] . While the proposed scheme may be improved
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by combining it with other methods in a similar fashion, the resulting performance

improvement is not expected to be significant.

A major limitation of the proposed implementation is that it is restricted to

two dimensions. Currently, the different slices in multi-slice datasets are processed

independently without considering the field map smoothness across slices. The ex-

tension of this algorithm to three dimensions can provide further improvement in

performance of the current two-dimensional method. Specifically, the smoothness of

the field map between the slices can enable us to resolve the ambiguities in datasets

with disconnected regions. For example, we anticipate that this extension will im-

prove the performance in the context of dataset #12 (see Fig. 3.7). Specifically, the

2-D scheme recovers the first and third slices accurately, while the second slice had a

swap due to the disconnected regions. This will be part of our future work.

We have adopted the fat water model in Eq.3.1, which is relatively established

in the fat water community. Hence, our algorithm shares the benefits and drawbacks

associated with the specific model. For example, the proposed algorithm is dependent

on the number of fat peaks and their relative strengths in the model. This assumption

considerably reduces the unknowns and offers a proportional reduction in variance.

However, it is likely to result in biases when the relative strengths differ from actual

values. Similarly, we have consolidated the decay parameters of fat and water into

a single term. While the consolidation of the decay terms of fat and water into a

single T ∗2 term is shown to be beneficial [40, 41], this approach may introduce biases

in regions where this assumption is violated.
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3.9 Conclusion

The focus of this chapter was on the development of a novel graph surface

estimation method for field map estimation in MRI fat-water decomposition. In this

work, a new smoothness constrained formulation was proposed to implicitly incorpo-

rate the assumption of field map smoothness. A discretized field map volume was

designed for the purpose of globally optimal surface estimation. The method was

developed, applied to various datasets and demonstrated the superior performance of

the developed method in terms of both qualitative and quantitative accuracy metrics.

The results also demonstrate that the developed method is also more efficient than

the previous graph cut methods. The results clearly show the improved performance

of the proposed approach and applicability in future studies and clinical applications.
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CHAPTER 4
FAT WATER DECOMPOSITION USING RAPID GLOBALLY

SURFACE ESTIMATION (R-GOOSE)

4.1 Introduction

In Chapter 3, we introduced a non-iterative single-step graph search algorithm

termed as GOOSE to solve a constrained optimization problem [94]. The 3D extension

of GOOSE was also introduced to improve the performance by exploiting the cross-

slice field smoothness and jointly processing three dimensional datasets.

In short, GOOSE and 3D-GOOSE minimize the discrete approximation of

the original problem, subject to smoothness constraints on the field map. The field

inhomogeneity induced frequency shifts at each pixel are assumed to be on a uniform

grid. The algorithm constructs a graph with as many layers as the size of the discrete

grid, where each node (corresponding to a specific pixel and frequency) in the graph

is connected to only a few of the nodes in the adjacent pixel within a small range

of frequencies. This constrained optimization problem is then solved using a graph

search framework. The hall-mark of the algorithm is its ability to converge to the

global minimum of the optimization problem as shown in [89]. The global convergence

of the algorithm translates to greatly improved results over state-of-the-art methods.

The ability of GOOSE to considerably reduce the swaps in challenging applications,

compared to the iterative graph cut solution is seen from the experiments in Chapter

3.

Despite the improved results offered by GOOSE, the main problem associated
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with this scheme is its high computational complexity, which limits its applicability to

large scale 3D problems. In particular, the complexity of the algorithm is dependent

on the size of the graph, which in turn is dependent on the discretization of the field

map. Typically, the problem discretization results in graphs with more than 100

layers, which are computationally expensive and memory demanding.

The main focus of this chapter is to introduce a new graph search model for fat-

water decomposition that inherits the global optimality of GOOSE, while reducing the

computational complexity by an order of magnitude. Here, we consider a smoothness

penalized likelihood scheme, as opposed to the smoothness constrained setting in

GOOSE. In particular, we formulate the field map estimation as a 3D optimization

problem, where the proposed global criterion is the sum of the voxel independent

maximum likelihood measurement and a smoothness regularization penalty term.

Apart from the differences in the formulations, the main difference from GOOSE is

the significantly smaller size of the graph. We perform a fast discrete pixel-by-pixel

search to identify the local minima of the voxel independent likelihood measure at

each pixel, then the solutions at each pixel are constrained in a set of local minima.

The rest of this chapter is organized as follows: We will introduce the 3D

smoothness regularized formulation and illustrate the key differences from the previ-

ous smoothness constrained formulation in GOOSE and 3D-GOOSE. Then we will

propose a new non-equidistant graph model to solve the smoothness regularized for-

mulation. Finally, the comparison between GOOSE and the new algorithm, which is

termed as rapid GOOSE (R-GOOSE) on the 2012 ISMRM Challenge datasets will
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be shown with further discussions on the main characteristics of the new algorithm.

4.2 Problem Formulation

4.2.1 Background

Here, we briefly review the GOOSE formulation. In GOOSE, the recovery of

the field map at all pixels was formulated as a single optimization problem [94]:

f̂ = arg min
f(r)

∑
r

D (f(r)) such that

|f(r + ex)− f(r)| ≤ F

|f(r + ey)− f(r)| ≤ F, (4.1)

Here, ex = (1, 0, 0) and ey = (0, 1, 0) are the unit vectors in the x and y directions.

Since D (f(r)), the voxel independent maximum likelihood prior has multiple local

minima at each location, GOOSE imposes hard constraints for the permissible devi-

ation of frequency values between adjacent voxels. To solve the above optimization

problem, the frequency values are discretized onto a uniformly full grid with a grid

spacing ∆, where F is assumed to be a multiple of ∆. A brief graph illustration can

be seen in Fig. 4.1.(a). The readers are referred to Chapter 3 for more details.

4.2.2 Rapid Globally Optimal Surface Estimation (R-GOOSE)

We reformulate the GOOSE formulation with the focus on significantly reduc-

ing the number of layers in the graph, which will result in reduced computational

complexity. Rather than considering the uniform discretization of the frequency axis,
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Figure 4.1: Illustration of the graph constructions in GOOSE (a) and R-GOOSE (b).
For simplicity, we restrict our attention to 2-D graphs, while our implementation is in
4-D. The maximum likelihood measurement specified by D(f(r)) is discretized on a
uniform grid of field map values; the plot of D(f(r)) at a specific pixel is shown in (c).
(a) In GOOSE, the fieldmap was uniformly discretized with each node corresponding
to a discrete frequency, indicated by the black dotted lines in (c) and the black circles
in (a) and (c). A graph smoothness constraint was used in GOOSE, where each node is
connected to only (2α+1) nearby nodes in the adjacent pixels. Here, the smoothness
constraint α was 1. The node costs were chosen as D(f(r)), while no smoothness
costs were considered. (b) In R-GOOSE, we only consider the local minimizers of
D(f(r)), which correspond to the nodes at each pixel, indicated by the green circles
in (b) and (c). Note that the nodes are not equispaced in the R-GOOSE setting.
We use a graph ssmoothness penalty in R-GOOSE as opposed to the smoothness
constraint in GOOSE. Hence, each node in a pixel is connected to all the nodes in
the adjacent pixels. The node costs are still chosen as D(f(r)), while the smoothness
cost between the ith node in pixel r and the jth node in its neighboring pixel s are
chosen as wr,s|fi − fj|2.The objective here is to find the surface (S) that minimizes
the total of both costs.

Figure 4.2: (a)-(e) An example of inter-column edge connectivity. Minimizers
col(r1) = 4, 6 and col(r2) = 1, 3 are chosen to form the new graph.There are four
possibilities of where the surface cuts through, indicating four combinations of mini-
mizers in the final solution, which depends on the total cost from the combination of
edges and nodes.
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we will now consider non-uniform discretization. In particular, we will choose the

permissible frequency values at each pixel as the local minima of D (f(r)).

We determine the set of local minima at the spatial location r, denoted by

LM(r), by searching the finite differences of D (f(r)). Suppose at location r, f1,

f2 and f3 are three consecutive field map values in the grid. We compute the finite

differences d(f2) = D(f2)−D(f1), and d(f3) = D(f3)−D(f2) respectively. If d(f2) < 0

and d(f3) > 0, then f2 is a minimizer. Due to the fineness of the grid in discretization,

it is possible that d(f2) = 0, then we continue to calculate d(f3), if d(f3) > 0, then

both f2 and f3 are minimizers. We observe that this pixel by pixel search is very fast.

Once the sets LM(r) are determined, we pose the field map estimation problem

as the smoothness penalized 3D optimization problem:

f̂ = arg min
f(r)

∑
r

 D(f(r))︸ ︷︷ ︸
data consistency

+µ
∑

s∈N (r)

wrs|f(r)− f(s)|2︸ ︷︷ ︸
smoothness regularization

 , f(r) ∈ LM(r);∀r(4.2)

Here, r = (x, y, z), with the third dimension z as the zth slice of the im-

age data. N (r) is the local neighborhood of the voxel at location r and µrs are

pre-defined weights that penalize the differences of the field map values in the neigh-

borhood N (r). The first term is the sum of the voxel-independent criteria in [6] that

promotes the consistency between the data model and measurements. The second

term is the smoothness regularization that encourages field map smoothness. µ is the

regularization parameter that balances the first term and second term. The choices
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of f(r) are limited to LM(r), the set of minimizers at location r. The objective of the

formulation is to find out the optimal field maps in all three dimensions that minimize

the sum of data consistency and field map smoothness penalty.

Similar to GOOSE, we transform the optimization problem into a graph based

surface estimation problem. Herein, each element in LM(r) is represented as a node

in the graph. Similarly, we denote the uniform grid is of size Nx×Ny×Nz×Nf . Nx,

Ny and Nz are the size in x-, y- and z- directions, and Nf is the number of discrete

frequency values at each location (x, y, z). Let col(x, y, z) represent a node column

wherein col(x, y, z) ∈ LM(x, y, z), x ∈ {0, 1.. . . . Nx − 1}, y ∈ {0, 1.. . . . Ny − 1} and

z ∈ {0, 1.. . . . Nz − 1}. Compared to GOOSE, the nodes in the new graph are no

longer equidistantly spaced. The goal of the surface estimation problem is to find a

surface S(x, y, z) = f̂(x, y, z), such that the the surface S(x, y, z) intersects each node

column exactly once and the objective function shown in Eq.(5.2) is minimized.

Note the size of the sets LM(r), and hence the number of layers in graph,

are considerably smaller than the size of discretized nodes in the GOOSE setting.

For example, in Fig.4.1.(c), the full field map range Rf is about 0-1200Hz, therefore

the graph in GOOSE contains 100 layers with a grid spacing of 12Hz. But the

proposed formulation only needs to consider the three local minimizers. It is possible

that the discretized nodes are not the exact local minimizers in GOOSE (maybe

close neighbors of local minimizers). The new graph construction with the non-

uniform discretization strategy effectively mitigates this discretization error while

also reducing the computational complexity present in GOOSE formulation.
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In particular, the entries of the set LM(r) can be determined with arbitrary

accuracy, while the computational complexity of the graph search algorithm depends

on the number of entries in the set LM(r). The non-uniform spacing between the

nodes makes it difficult to solve using conventional algorithms, which are designed for

uniform sampling. We use the graph construction introduced in [95] which is briefly

discussed in the next subsection to solve the optimization problem with non-uniform

spacing. Since the smoothness penalty involves a convex (quadratic in our setting)

distance measure, the graph algorithm [95] is guaranteed to converge to the global

minimum of Eq.(5.2).

4.3 Graph Construction

Overall, the graph construction has four main steps: 1) Extract the local

minimizers (LM(x, y, z)) of D(f(x, y, z), 2) Construct a subgraph Gz for each slice

z where z ∈ {0, 1, ..Nz − 1}, 3) Add the intra-column and inter-column edges in Gz

to encode the data consistency term and smoothness regularization term (in x and y

directions) for each slice z, 4) Construct the main graph G through the union of the

subgraphs Gz by adding edges between successive Gz’s to incorporate the smoothness

regularization term in the z direction.

The local minimizer set LM(x, y, z) is extracted by using the finite difference

method at each location as discussed in the previous section. Then a subgraph Gz is

constructed for each slice z where z ∈ {0, 1, ..Nz − 1}. Herein, each element in the

set LM(x, y, z) where x ∈ {0, 1, ..Nx − 1} and y ∈ {0, 1, ..Ny − 1} is represented as a
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node in the graph Gz. Denote Nf as the size of LM(x, y, z). Thus, a subgraph Gz has

Nx×Ny×Nf nodes. Denote a column col(x, y, z) for slice z where x ∈ {0, 1 . . . Nx−1},

y ∈ {0, 1 . . . Ny − 1} and col(x, y, z) ∈ LM(x, y, z). For the ease of notation denote

r1 as (x, y, z) tuple for z-th slice and r2 as a neighboring tuple to r1 in the z-th slice.

We use 4-connectivity of graph neighborhood in x- and y- directions in this paper.

At each slice z, we compute D(f(x, y, z)) on a fine frequency grid, followed by the

extraction of the local minimizers such as f1 and f2 in Fig.4.1.(b).

The intra-column edges are added to encode the corresponding data consis-

tency term. Next inter-column edges are added between two neighboring columns

col(r1) and col(r2) to encode the smoothness regularization term in the x and y di-

rections. Details regarding the edge construction can be found in [95]. Our proposed

approach uses a new graph construction which provides two major differences: 1)

The graph is able to incorporate the non-equidistant nodes in a column as required

due to the extraction of minimizers. 2) The graph applies a convex regularization be-

tween solutions for two neighboring columns. In other words, using the proposed

approach, for a solution S(r1) = a, the feasible solutions for S(r2) = bi where

i ∈ {0, 1, ... . . .LM(r2) − 1}, thus allowing a to talk to all the nodes in col(r2) as

can be seen in Fig.3.1.(d). The inter-column edges are added in a way that based

on the new graph construction [95], for a given solution S(r1) = a and S(r2) = bi,

the regularization cost is µ|S(r1) − S(r2)|2, which is the exact quadratic penalty in

Eq.(5.2). It should also be noted that some of the edge weights in the new graph may

be 0 and thus only positive edge weights are added.
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Next, graph G is constructed by adding inter-column edges in a similar fashion

between the corresponding columns in successive subgraphs Gz and Gz+1 to incorpo-

rate the smoothness regularization term in the z direction. Denote r1 as a (x, y, z)

tuple for z-th slice and r3 as the corresponding tuple (x, y, z + 1) to r1 in the z + 1-

th slice. The edge connection betweeen corresponding columns col(r1) and col(r3)

is built in the same manner as columns col(r1) and col(r2), which can be seen in

Fig.4.1.(b). Thus, there is a stark difference between our proposed method and the

constrained graph construction in GOOSE, where for a resultant solution of S(r1) = a

, the only feasible solutions (nodes that a can talk to) for S(r2) are b1, b2 and b3, by

virtue of the hard constraints used in GOOSE which can be seen in Fig.4.1.(b).

Fig.4.2(a) - (e) are an example of the edge connectivity in the new graph

construction. Denote a 2 by 6 graph G1 with data consistency shown as D(f(r1))

and D(f(r2)) for two neighboring columns col(r1) and col(r2), respectively. As shown

in Fig.4.2(a), D(f(r1)) reaches the minimum when col(r1) = 6 and col(r1) = 4.

Therefore we extract minimizers col(r1) = 6 and col(r1) = 4 from the uniform grid

and similarly col(r2) = 3 and col(r2) = 1 to form the new graph G2 with source

s and terminal t for graph search. Based on the conditions in [95], we build four

directed edges E(6, t), E(6, 3), E(4, t), E(4, 3) in the graph as shown in Fig.4.2(b) -

(e). For instance, if the surface goes through col(r1) = 6 and col(r1) = 3 in Fig.4.2(b),

then the total cost that surface incurs is E(6, t) + E(6, t) = 9, which is equal to the

quadratic difference between col(r1) = 6 and col(r2) = 3. In (h), there is no directed

edge between col(r1) = 4 and col(r2) = 1 but the crosstalk between these two is
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still allowed with the associated edge cost as the sum of E(4, t) and E(4, 3). This

principle also applies to Fig.4.2(c) and (e). Note that in Fig.4.2(c), the total edge

cost is E(4, t) = 1 instead of E(t, 1)+E(6, 3) = 9 because only costs of edges directed

from source set to terminal set are considered in calculating the max flow [89]. Here,

we did not show the intra-column edges to avoid obscuring the main idea.

In GOOSE, edge connectivity between nodes has no direct contribution to

the total cost. In other words, the total cost in GOOSE is only the sum of node

costs D(f(r)). The objective in GOOSE is to search for an optimal surface S that

intersects a set of nodes that provides the minimal total cost. However, the purpose

of building the new graph is to find a set of surfaces, where each one goes through

a local graph and they collectively provide the minimized combination of node and

edge costs in G. A pseudo-code for the new graph construction and optimal surface

search is shown below.

�

�

�

�

Algorithm 4.3.1: Graph Search for Optimal Field Map (D(f(r))

1. Discretize field map in search range Rf

2. Extract the set of minimizers LM(r) from all locations

3. Construct graph G(f(r)) and assign costs D(f(r)) to each node

4. Build intra- and inter-column edges with weights for smoothness penalty

5. Solve for the surface estimation using minimum s-t cut algorithm

6. Recover the optimal surfaces and refine the solution
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4.4 Experiment Design

In this work, results of the 17 datasets from 2012 ISMRM Challenge by ap-

plying the R-GOOSE framework are compared against those from GOOSE in quan-

titative accuracy and computation time. The quantitative accuracy, or the score is

determined by the percentage of pixels in the pre-defined mask in which the differ-

ence of fat fraction between the tested result and the reference is less than a threshold

(0.1). Details can be found in Chapter 3, Experiment Design section. We adopt the

parameters of the reference signal model in the judging section of the 2012 ISMRM

Challenge. Specifically, we use six fat spectral peaks at δi = [-242.7060, -217.1580, -

166.0620, -123.9078, -24.9093, 38.3220] Hz at 1.5T, with relative weights βi = [0.0870,

0.6930, 0.1280, 0.0040, 0.0390, 0.0480]. A single T ∗2 constant is used at each voxel.

The search of 1/T ∗2 = R∗2 is separated as a preprocessing step before field map estima-

tion, and is repeated with the obtained field map after graph search for optimization.

Implementation details from data input, graph search to the final output of separate

fat and water images can be seen in Fig.4.3.

Three parameters need to be optimized in the proposed algorithm: 1) Nf ,

the number of graph layers, or the number of entries in LM. Nf is expected to be

able to cover the field inhomogeneity range which can be estimated by 1/∆TE for

uniformly sampled data. D(f(r)) is periodic and contains at least two minimizers

in each period in a typical case with both fat and water for the pixel. The largest

range of field inhomogeneity for all the 17 datasets is about [0, 1020]Hz in dataset

12 and contains up to 5 periods (about 12 minimizers). Therefore, we test Nf = 3
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Figure 4.3: The information flow in the implementation of R-GOOSE. We discretize
D(f(r)) in Eq.(5.2) on a uniform grid. Then we extract all minimizers (colorcoded
in green) using finite difference method and import them to the graph model. The
field map and the initial R∗2 = 1/T ∗2 map are obtained after the globally optimal
surface estimation using the proposed smoothness penalized optimization formulation.
The R∗2 are then updated in refinement using field map from graph search, which in
conjunction with the field map is used for estimating fat water concentrations. The
fat and water recovery can be achieved in steps after Graph Search.

up to 12 to ensure the coverage of the entire field inhomogeneity. 2) Nr, the number

of discrete values of R∗2. We use the search range of R∗2 as 0 s−1 to 500 s−1 with the

number of discrete values Nr = [2, 10, 20, 30, 40, 50, 60, 70, 80]. 3) µ, the regularization

parameter in Eq.(5.2). Similar to [41] and [59], the optimization is conducted in the

range of [0.01, 100].

Optimal parameters are determined by applying R-GOOSE with the above

mentioned different values and benchmarking the quantitative scores with the refer-

ence in the first four uniformly sampled datasets. Note that the proposed framework

can still be applied to non-uniformly sampled datasets such as dataset 3. Since the

pattern of D(f(r)) for the non-uniformly sampled data is different from the uniformly

sampled data, dataset 3 is not used to optimize Nf for the rest of uniformly sampled

datasets in this experiment.



www.manaraa.com

61

4.5 Results

4.5.1 Parameter Optimization

The study of Nf with respect to the average score is shown in Fig.4.4(a). The

average score starts to plateau around 9980 for R-GOOSE when Nf = 8. A better

quantitative performance as Nf increases is because the field variation is not fully

accounted for until Nf = 8. In Fig.4.4(b), the average score reaches the maximum

around 9980 when Nr is larger than 30. Therefore, we chose Nr = 30 for the rest

of the study. The average scores remain relatively unchanged between µ = 0.1 and

µ = 10 in Fig.4.4(c). µ is set as 0.5 for the rest of experiments with the highest

performance. The average run-time increases as the number of Nf goes bigger as in

Fig.4.4.(d).

4.5.2 Comparison with GOOSE

In Fig.4.5, the liver dataset is challenging because the dome of the liver is

surrounded by a signal void at the 2nd slice. This large low SNR region results in

a swap in GOOSE and other state-of-the-art algorithms (See Chapter 3 Fig.3.7). In

GOOSE, the difference between adjacent field map values is strictly set to be less than

the hard constraint F in Eq.(4.1). However, the soft constraint as the smoothness

penalty term in Eq.(5.2) in the proposed formulation permits a necessary ‘jump’ of

field map from one node to its next. R-GOOSE successfully resolves the fat water

swap as pointed by the arrow in the figure.

Table 4.1 shows quantitative scores and run-times from GOOSE (G) and R-
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Figure 4.4: Dependence of the solution on the parameters. In (a), the change of the
average score as a function of the number of layers (minimizers) Nf at 3 to 12 is
plotted. The overall performance of R-GOOSE reaches the similar level as GOOSE
(the dashed line) when Nf = 9. (b) is the plot for the averages score obtained from
R-GOOSE as a function of the number of R∗2 points, Nr. Here, we use Nf = 9 and
µ = 100. We choose Nr = 30 for the rest of the experiments. Nr is observed to have
little impact in computational time so the result of the time change with respect to
Nr is not shown here. The score change with respect to the penalty parameter µ is
shown in (c) for R-GOOSE. The scores are consistent across all Nf when µ is between
[0.1, 2.0]. (d) is the plot for the relation between the average use of time and Nf . The
average time of Nf = 8 is around 8 seconds and is reduced by an order of magnitude
overall compared to GOOSE, the dotted line in the figure. Together with (a), we can
see that R-GOOSE is able to achieve the same level of accuracy with at least 30 times
of time saving in comparison with GOOSE.

GOOSE (RG) across the 17 datasets. As can be seen from the table, R-GOOSE

obtain higher scores than GOOSE over the 17 datasets. The average run-time is

323 seconds for GOOSE while it is 8.1 for R-GOOSE. The new graph construction
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Figure 4.5: Qualitative comparisons between GOOSE and R-GOOSE on a liver
dataset (2012 Challenge dataset 12). The fat fraction map shows that R-GOOSE
resolves the swap while it remains in the the result from GOOSE. Overall, the pro-
posed method outperforms GOOSE by more than 6% in quantitative scoring.

Table 4.1: Quantitative and computational time comparisons of the proposed scheme
against GOOSE. The first two rows are quantitative scores of GOOSE (Q(G)) and
the proposed method (Q(RG)) for the 17 datasets. The last two rows are the compu-
tational time in seconds of graph search for GOOSE (T(G)) and the proposed method
(T(RG)). Note that the scores of GOOSE are the summation of scores of multiple 2D
single slices processed using GOOSE.

with the non-uniform spacing effectively mitigates this discretization error while also

reducing the computational complexity in GOOSE.

4.6 Discussion

Similar to GOOSE, the proposed approach transforms the optimization prob-

lem to a surface estimation problem, but by only employing local minima in the graph

construction. Each local minima is represented as a node in the graph and adjacent

nodes in the graph are connected by edges with pre-defined weights. Specifically, our

proposed approach has four distinct features:
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• The graph enables the existence of the non-uniform spacing between nodes,

which reduces the number of layers in the graph by an order of magnitude

(10-12 layers).

• Since the nodes (elements in the set of local minima) are non-uniformly spaced,

a novel graph based surface estimation method [95] is introduced to solve the

optimization problem. This new graph construction gives rise to significant

reduction of edge connectivity in the graph.

• The employment of non-uniformly spaced nodes and the new graph construction

result in fast computation and less memory demand in implementation.

• Furthermore, the proposed approach incorporates a smoothness term which

penalizes the difference between two neighboring solutions using a quadratic

penalty. Since we restrict the solutions to the local minima at each location,

the algorithm is also robust to the selection of the smoothness regularization

parameter.

In addition, similar to GOOSE, the proposed approach continues to obtain the global

optimality of the final solution.

Meanwhile, the restriction of graph search to local minima also improves

the accuracy of fat water recovery compared to GOOSE. In particular, R-GOOSE

achieves full score in dataset 9 and 13. This is possible because the proposed method

only chooses solutions from the exact minimizers, whereas GOOSE also considers

possible field map values in the vicinity of the minimizers. In our experiment, the
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separation results are observed to be consistent and stable once the number of local

minima Nf is larger than 8 at each location. With the high accuracy and reduced run-

time, R-GOOSE can be potentially used in different applications such as Quantitative

Susceptibility Mapping (QSM). R-GOOSE can be considered as an alternative to the

current phase unwrapping procedure and the field inhomogeneity removal, through

which a more accurate QSM can be obtained.

This smoothness-penalized optimization formulation in Eq.(5.2) is similar to

[41], but the main difference here is the restriction of the feasible solutions at each

pixel to the set LM(r). A similar strategy was used in [59], where the solutions are

restricted to two local minima at each pixel. Since the quadratic pseudo boolean

optimization (QPBO) algorithm in [59, 96] can only yield a partial solution, iterated

conditional modes (ICM) [96] or multi-scale optimization was used [59] to ensure

global convergence. However, we rely on a single-step algorithm (R-GOOSE) with

guarantee of convergence to the global optimum of the cost function.

Though the proposed work has significantly reduced the memory demand for

graph construction (100 layers to 9 layers per slice on average), one limitation of the

proposed work is the memory requirement for hardware in solving large 3D cases. In

order to perform a globally optimal search, the graph search method, by nature, is

designed to include all entries of the set LM(r) at each pixel and the associated edge

connectivity in the neighborhood of the pixel. With the edge connectivity among

slices, the constructed 4D graph volume (3 spatial dimensions plus a 4th frequency

dimension) will need larger memory storage than the summation of the 3D graph vol-
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umes at each slice. Therefore, a certain assessment for hardware capacity might be

taken into account before the proposed method is applied on very large 3D datasets.

One possible workaround is to reduce the size of LM(r) by only keeping entries with

smallest data costs D(f(r)). This can be achieved by using techniques such as thresh-

olding the data costs among all minimizers at each location.

4.7 Conclusion

In this chapter, a non-equidistant graph search model R-GOOSE is proposed

in this work to improve the fully discretized model in our previous work GOOSE.

With the new graph construction, the edge connectivity and number of nodes in the

graph are reduced by an order of magnitude. In our experiments, R-GOOSE achieves

slightly higher accuracy for fat water separation in ISMRM Challenge datasets, while

the computation time is reduced by more than thirty times compared to GOOSE.
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CHAPTER 5
FAT WATER DECOMPOSITION USING MULTI-RESOLUTIONAL

RAPID GLOBALLY SURFACE ESTIMATION (mR-GOOSE)

5.1 Introduction

From Chapter 3 to 4, we have introduced GOOSE, 3D-GOOSE and R-GOOSE

three different graph search frameworks to solve for the MRI fat water separation

problem. To the best of our knowledge, GOOSE is the first graph based algorithm

that has achieved the global optimality of the pre-designed cost function without re-

quiring an iterative approximating process like many previous methods. While still

maintaining the global convergence of the smoothness regularized problem formula-

tion, R-GOOSE utilizes a non-uniformly spaced graph model to avoid the connectivity

contraint in the fully discretized graph model of GOOSE. The reduced graph size re-

sults in an order of magnitude improvement in computational efficiency, which is

promising for possible clinical applications.

However, as we noted in Chapter 4 Discussion section, even though R-GOOSE

is already among the fastest methods in field map estimation and fat-water separation,

R-GOOSE may still face computational challenges both in terms of run-time and

memory demand. The reasons are two-fold. First, as the technology advancement

continues in MRI hardware, MRI datasets are growing towards 1) high resolution

in spaital dimension, or an increase of size in x− and y− dimensions of the signal

model, 2) high resolution in temporal dimension which can mean an increase of echo

time, 3) full 3D scan of an anatomical region such as head or whole body, causing a



www.manaraa.com

68

larger number of slices, and 4) high field strength such as 7T, which transfers into an

increase of size in the frequency dimension in the R-GOOSE graph model. It can also

cause an increase of sheer value in cost function calculation which possibly requires a

large data storage in computation. The other reason is, on the opposite, real clinical

applications always appreciate a close-to-real-time fat water separation result while

the scan is taking place.

Therefore, there is a strong motivation for further computation control. This

chapter focuses on developing a new framework based on R-GOOSE that can further

reduce the computational complexity, while still preserving the global convergence of

the problem formulation. In this work, we continue to adopt the smoothness regu-

larized formulation in R-GOOSE. However, we further exploit the field map smooth-

ness in the vicinity of the local minima in spatial dimensions by creating a multi-

resolutional pipeline in data flow. Optimal surface estimation is conducted twice,

both at the original and a lower resolution of the voxel independent likelihood mea-

surement. Both spatial and frequency dimensions are reduced in the steps of graph

search, resulting in a further reduction of computational time.

Next, we first introduce the new information flow of the new framework from

data input to the final outcome. Then we will explain the modifications of R-GOOSE

formulation at the graph search steps of the multi-resolution framework. In the

experiments, we will show the comparison between GOOSE, R-GOOSE and mR-

GOOSE for both quantitative results and run-times. Finally, we conclude the chapter

by discussing limitations of framework and possible improvements in future work.
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Figure 5.1: The information flow in the implementation of mR-GOOSE. In the multi-
resolutional frame, the new downsampled D(f(r)) is computed as a summation of the
local patch of the original data consistency. Once the initial field map is acquired
from graph search, the set of minimizers is chosen to be the two candidates closest in
frequency to the initial coarse estimate at each location. Then the final field map is
refined by running the graph search for the second time. The fat and water recovery
can be achieved in steps after Graph Search.

5.2 Multi-resolution Framework

Similar to Figure 4.2 in Chapter 4, Fig.5.1 illustrates the pipeline of data

processing in the mR-GOOSE framework. As seen in the figure, there are two key

differences in the mR-GOOSE framework compared to R-GOOSE: the Data Consis-

tency Downsampling and Upsampling.

We now introduce these two steps respectively and draw connections to the

data flow in R-GOOSE. First, we briefly review the steps in R-GOOSE. In R-GOOSE,

we first determine LM(r), the set of local minima at the spatial location r. By

observing the change of sign for the finite differences of D (f(r)) in three consecutive

field values in the frequency dimension, we decide whether the middle field value is a
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local minimum, shown as Search of Minimers in both Fig.4.2 in Chapter 4 and Figure

5.1. Once LM(r) is determined, we search for the optimal field map by solving the

following smoothness penalized formulation:

f̂ = arg min
f(r)

∑
r

 D(f(r))︸ ︷︷ ︸
data consistency

+µ
∑

s∈N (r)

wrs|f(r)− f(s)|2︸ ︷︷ ︸
smoothness regularization

 , f(r) ∈ LM(r);∀r(5.1)

N (r) in (5.1) denotes the local neighborhood of the voxel at location r. wrs are pre-

defined weights that penalize the differences between field map values in the neigh-

borhood N (r). µ is the regularization parameter that balances the data consistency

term and smoonthness penalty term. The choices of f(r) are limited to LM(r), the

set of minimizers at location r.

In mR-GOOSE, we first define a downsampling window as a non-overlapping

square pixel neighborhood in the x− and y− spatial dimensions of the initial data

consistency prior D(r). Then we subsample D(r) to obtain the new data consis-

tency prior E(p) at a lower-resolution grid by summing up D(r) in the downsampling

window:

E(f(p)) =
∑

s∈M(r)

D(f(s)) (5.2)

Here, M(r) is the downsampling window. Note that it is different from N (r). N (r)

is the pre-defined voxel neighborhood where the smoonthness penalty is imposed

between two connected nodes in the adjacent columns. The downsampling factor
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α(or the window size) is the length of a side of the downsampling window. An

example of the downsampling process is shown in Fig.5.1, where the downsampled

data consistency prior E(f(p)) is obtained from a 2 by 2 window in the original

volume of D(r). Here, the downsampling factor is 2. After the local minima set

LM(p) is identified by searching for the finite difference in the volume of E(f(p)), the

graph search algorithm is performed by solving the modified smoothness regularized

optimization problem:

f̂ = arg min
f(p)

∑
p

E(f(p)) + µ
∑

s∈N (p)

wrs|f(p)− f(s)|2
 , f(p) ∈ LM(p);∀p (5.3)

Note that the solution from graph search is not the final values for field map estima-

tion. We assume the field map is smooth and therefore the graph search result from

Eq.(5.1) can provide the vicinity of the final solution. In other words, the purpose of

the Data Consistency Downsampling step is to obtain a coarse estimate of the final

optimal field map values while the graph size is only 1
α2 of the original setting as in

R-GOOSE.

Next, we introduce the Data Consistency Upsampling step. After locating the

vicinity of the final solution via the first graph search, we search for the closest local

minimizer (CLM(r)) neighbors of the field value in the corresponding low-resolution

grid. Therefore, the optimization problem is modified to the following:

f̂ = arg min
f(r)

∑
r

D(f(r)) + µ
∑

s∈N (r)

wrs|f(r)− f(s)|2
 , f(r) ∈ CLM(r);∀r (5.4)
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Note that the number of entries Nclm in CLM(r) can vary depending on the specific

data consistency prior D(r). It can also be affected by the accuracy of approximation

from the low resolution graph search result, or in other words, the value of downsam-

pling factor α. Once CLM(r) is determined, another graph search with only Nclm

layers is conducted with a further reduction of computational time. The upsampling

steps are also shown in Fig.5.1. With the final solution for field map after the second

graph search, the following steps to optimize R∗2 and attain fat- and water-only maps

are the same as in R-GOOSE.

5.3 Experiment Design

In order to maintain the consistency of signal model used in different frame-

works, we continue to adopt the parameters of the reference signal model in the

judging section of the 2012 ISMRM Challenge. Six fat spectral peaks model is used

with the spectrum locations at δi = [-3.80, -3.40, -2.60, -1.94, -0.39, 0.60]ppm, with

relative weights βi = [0.0870, 0.6930, 0.1280, 0.0040, 0.0390, 0.0480]. Similarly, the

single T ∗2 constant is used at each voxel. The search of 1/T ∗2 = R∗2 is separated as

a preprocessing step before the first graph search, and is repeated with the obtained

field map after the second graph search for optimization.

In this work, we compare the proposed mR-GOOSE framework with R-GOOSE

and GOOSE by applying all three framworkds on the 17 datasets from 2012 ISMRM

Challenge. The performance are judged based on both quantitative accuracy and

computation time. The quantitative accuracy, or the score is determined by the
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percentage of pixels in the pre-defined mask in which the difference of fat fraction be-

tween the tested result and the reference is less than a threshold (0.1). All algorithms

are computed on the Linux Workstation with 3.2 GHz Intel Xeon CPU and 23.6GB

RAM to ensure the same computing capacity in hardware.

We also determined the validity of the proposed scheme and evaluate the

computational savings compared to R-GOOSE on nine bilateral lower limb datasets

with 0.7mm slices, acquired with a gradient-echo-based 3-point Dixon sequence. All

nine datasets are of size 512 × 240 × 30 in spatial dimensions and contain 3 echo time

at [3.45, 4.60, 5.75]ms. mR-GOOSE is also tested on one quantitative susceptibility

mapping (QSM) dataset. The dataset is collected on Siemans 3T scanner with 5.9ms

echo time shift and size of 256 × 256 × 64. More details can be found at [39].

Results from mR-GOOSE are compared with the orignal method in [39], where a

region growing method is employed for field map estimation.

Two parameters need to be optimized in the proposed algorithm: 1) Nclm,

the number of graph layers in the second search, or the number of entries in CLM .

As we observed in R-GOOSE, the largest range of field inhomogeneity for all the 17

datasets is about [0, 1020]Hz in dataset 12 and contains up to 5 periods (about 12

minimizers). The maximum number of local minima in each period can be up to 4.

Therefore, we test Nf = 2 up to 4 to ensure the coverage of all possible local minima

in one period for the second graph search. 2) α, the downsampling factor. We test 4

values: α = 2, 4, 6, 8 in this experiment. Since the graph search steps are identical

to R-GOOSE, we adopt Nr, the number of discrete values of R∗2 from R-GOOSE.



www.manaraa.com

74

Similar to R-GOOSE, [41] and [59], µ is also independent from the datasets due to

the smoothness regularized formulation. We again choose the optimal value obtained

from R-GOOSE. Optimal parameters are also determined by applying mR-GOOSE

with the above-mentioned different values and benchmarking the quantitative scores

with the reference in the first four uniformly sampled datasets. Again, the proposed

framework can still be applied to non-uniformly sampled dataset such as dataset 3.

Since the pattern of D(f(r)) for the non-uniformly sampled data is different from the

uniformly sampled data, dataset 3 is not used in optimization for the rest of uniformly

sampled datasets in this experiment.

5.4 Results

5.4.1 Parameter Optimization

The study of α and Nclm with respect to the average scores and run times

is shown in Table ??. The average score starts to decrease when the downsampling

factor reaches 6, even though the computation time is shortened to within 5 seconds.

The number of the closest local minima Nclm seems to have little impact on the scores

once α is chosen. However, the run time increases if Nclm goes higher. We choose α =

4 and Nclm = 2 for the rest of the experiments since they provide the best performance

on the first four uniformly sampled datasets.

5.4.2 Comparison with R-GOOSE and GOOSE

In Chapter 4, we showed the fat-water separation results for a live dataset from

both GOOSE and R-GOOSE. This dataset presents a signal void at the dome of the
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α Nclm Score Times

2
2 99.48 7.4

3 99.47 8.2

4 99.48 10.0

4
2 99.48 4.9

3 99.46 5.5

4 99.47 6.8

6
2 99.36 4.6

3 99.33 4.9

4 99.35 5.4

8
2 99.01 3.7

3 99.12 4.2

4 99.22 5.0

Table 5.1: Study of α and Nclm

with respect to quantitative scores
and running times.

object at the 2nd slice. This large low SNR region results in a swap in GOOSE and

other state-of-the-art algorithms (See Chapter 3 Figure 3.7). In Fig. 5.2, we show

the results from GOOSE, R-GOOSE and mR-GOOSE. Similar to R-GOOSE, the

smoothness regularized formulation in Eq.(5.4) in the mR-GOOSE allows the sudden

change of field map from one node to its next. mR-GOOSE also successfully resolves

the fat water swap as pointed by the arrow in the figure. Table 5.2 shows quantitative

scores and run times from GOOSE (G), R-GOOSE (RG) and mR-GOOSE (mRG)

across the 17 datasets. mR-GOOSE obtain higher scores than both GOOSE and

R-GOOSE over the 17 datasets. The average run time is 323 seconds for GOOSE,

8.1 for R-GOOSE and 4.5 for mR-GOOSE.
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Figure 5.2: Qualitative comparisons between GOOSE, R-GOOSE, and mR-GOOSE
on a liver dataset (2012 Challenge dataset 12). The fat fraction map shows that both
R-GOOSE and mR-GOOSE resolve the swap while it remains in the the result from
GOOSE. Overall, both mR-GOOSE and R-GOOSE outperform GOOSE by more
than 6% in quantitative scoring.

Table 5.2: Quantitative and computational time comparisons of the proposed scheme
against GOOSE. The first three rows are quantitative scores of GOOSE (Q(G)),
R-GOOSE (Q(RG)) and mR-GOOSE (mRG) for the 17 datasets. The last three
rows are the computational time in seconds of graph search for GOOSE (T(G)), R-
GOOSE (T(RG)) and mR-GOOSE (T(mRG)). Note that the scores of GOOSE are
the summation of scores of multiple 2D single slices processed using GOOSE.

Fig.5.4 shows results from the study on one of the bilateral lower limb datasets

using mR-GOOSE and R-GOOSE. The purpose of this study is to evaluate fat fraction

map as a biomarker for disease progression and treatment efficacy in degenerative

muscle diseases such as myotonic dystrophy (DM1) and Charcot-Marie-Tooth disease

(CMT), which are characterized by fatty infiltration as the muscle atrophies. The
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Figure 5.3: Comparison between mR-GOOSE and the region growing method on a
QSM dataset using mR-GOOSE. The size of the data is 240*512*30. Fat, water and
fat fraction maps of the 1st, 11th, 21st slices are shown. RG: region growing

running time is about 3 minutes for the dataset of size 512*240*30 without using

the multi-resolution frame, while the processing time using mR-GOOSE is around

1 minute. Since the results from mR-GOOSE is almost identical to the one using

R-GOOSE, we only show the ones from mR-GOOSE here.

Fig.5.3 shows results of field maps and QSM maps from both mR-GOOSE

and the region growing method in [39]. Both mR-GOOSE and region growing provide

correct results at the 21th slice. However, at the 28th slice, the region growing method

generates a few artifacts (pointed by arrow) near the sinuous area while the field map

obtained from mR-GOOSE are consistently smooth.
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Figure 5.4: Results of a knee dataset using mR-GOOSE. The size of the data is
240*512*30. Fat, water and fat fraction maps of the 1st, 11th, 21st slices are shown.

5.5 Discussion

The proposed mR-GOOSE framework has two major advantages: 1) Through

the multi-resolutional hierarchy, the complexity of the graph model is further less-

ened. Graph search is executed twice with a reduced size of graph each time resulting

in another 50% computational savings compared to R-GOOSE. 2) The framework

still maintains the global convergence of the optimization formulation. These two ad-

vantages guarantee a high level of accuracy and efficiency in fat water decomposition

results.

The number of the closest local minima Nclm has little effect on the outcome

of graph search. It is possibly because the coarse estimate from the first graph search

is very close to the final solution. With the purpose of ensuring global optimality, one

can also apply the thresholding technique to eliminate all local minima with relatively

large data consistency prior. This will further constrain CLM to only contain the local
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minima with the highest likelihoood for global optimality.

The choice of downsampling factor α can be improved with more data valida-

tion. One concern for choosing a proper α is that the field smoothness assumption

might not stand in certain cases. For example, in the live dataset (Fig.??), the signal

void inside the object contains strong field variations particularly near the boundary

of the void. Our experiment proves the results will contain artifacts or even fat water

swaps if α is greater than 6. Therefore, a larger variety of datasets can be used to

validate a more reliable choice of α.

As we note in Introduction, though GOOSE, R-GOOSE and mR-GOOSE ben-

efit from the global optimality of cost functions to achieve high performance without

an iterative process, the global convergence property alone will not guarantee the cor-

rect separation of water and fat, particularly in challenging datasets. Like all methods

that rely on optimization, the cost function needs to be designed and optimized care-

fully to ensure that the global minimizers are free of fat-water swaps. The benefit

of the proposed formulation is that the proposed scheme does not require additional

steps to ensure global convergence and is not sensitive to initialization in many iter-

ative methods. With the global convergence guarantee, the proposed algorithm is an

excellent tool to improve the formulation of the energy function.

5.6 Conclusion

In this chapter, a new multi-resolutional framework mR-GOOSE is proposed

to further improve the computational efficiency of fat water decomposition. Two
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steps of graph search at original and lower resolutions of the data consistency prior

shorten the run time to half of R-GOOSE. The efficiency and global accuracy are

demonstrated with both the 17 ISMRM Challenge datasets and 9 knee datasets with

a much larger size.
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CHAPTER 6
CONCLUSIONS

6.1 Summary

The ability of MRI to simultaneously map multiple chemical species based on

their different chemical shifts is of great clinical importance. Specifically, separating

signals originating from water and fat has a number of important applications, both in

cases where the goal is to remove the fat signal, as well as in cases where the fat signal

itself is of diagnostic interest. However, fat water separation is difficult in the presence

of large field inhomogeneities, convergence to local minima and high computational

complexity. Additionally, quantitative fat water imaging requires careful design of

the optimization formulation. This dissertation has studied the problem of fat water

separation in MRI, including new formulation, optimization strategies and efficient

implementation frameworks. The proposed methods have been characterized and

proven theoretically, and validated using a variety of datasets.

In short, we have developed GlObally Optimal Surface Estimation (GOOSE),

rapid GlObally Optimal Surface Estimation (R-GOOSE) and multi-resolutional R-

GOOSE, three new approaches for addressing fat water separation problem in MRI.

Specifically, we proposed that:

1. A new smoothness constrained formulation to implicitly incorporate the as-

sumption of field map smoothness. A discretized field map volume was designed

for the purpose of globally optimal surface estimation.
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2. A non-equidistant graph search model to replace the fully discretized volume in

GOOSE. With the new graph construction, the edge connectivity and number

of nodes in the graph are reduced by an order of magnitude.

3. A new multi-resolutional extension of graph search method to further improve

the computational efficiency of fat water decomposition. Two steps of graph

search at original and lower resolutions of the data consistency prior shorten

the run time by half in R-GOOSE.

4. All developed methods tested on the 17 ISMRM Challenge datasets with high

quantitative and qualitative accuracy. The computational efficiency is also well

demonstrated through validation.

6.2 Future Work

The scope of work for this thesis mainly focuses on the fat water separation

problem from the aspects of the signal modelling, optimization formulation design and

algorithm implementation. However, the final outcome of fat- and water-only images

is affected by many factors in the steps of data collection, image reconstruction as well

as the post-processing fat-water separation methods. Therefore, possible directions

of future work can be, but are not limited to the following:

1. A straightforward continuation of this thesis is a more rigorous validation of R-

GOOSE and mR-GOOSE through a larger variety of experiments and datasets.

So far we have majorly tested on the 17 ISMRM Challenge datasets and a few

other datasets. It will take a much larger pool of datasets with different field
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strengths, anatomical regions, and possibly various pathological presentations

on images for the further clinical impact.

2. Another direction of work can be the design of a new signal model and problem

formulations (cost functions) to better account for the natural flaw in the Dixon

model and the large field variations. In many different applications of quantifi-

cation of fat signals, the different types of fat might require a more sophisticated

model than the classic Dixon model. How to better account for T ∗2 effect than

a mere single T ∗2 model at each pixel may also provide a better visualization of

fat signals. Meanwhile, the global optimality provided by graph search methods

have already proven to be a consistent and high performing characteristic for

fat water separation. However, the global convergence alone does not gaurantee

a correct separation result as discussed before. Possible new problem formu-

lations with better accoutability for field inhomogeneity and ambiguity of the

current model, in combination with the global optimality, will further improve

the performance of fat and water separation methods.

3. Futhermore, current fat water separation methods are built on deterministic

models such as least square fitting, energy minimization and regularization. It

will have great research value to utilize other models such predictive ones in

machine learning (deep learning) for the purpose of fat water separation.

4. Last but not least, besides the possible work in fat water separation meth-

ods, improvements in data acquisition and MRI image reconstruction can also
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improve the result of fat water separation. For example, different pulse se-

quences and k-space trajectories can have an important impact on the fat water

separation method. It can be very insightful to conduct futher studies of the

acquisition time and separation results by designing different pulse sequences

as well as k-space trajectories.
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